Volume 17, No. 4, 1991

INVARIANT MEAN CHARACTERIZATIONS OF AMENABLE C*-ALGEBRAS

ALAN T. PATERSON

Abstract. It is shown that unital amenable and strongly amenable C*-algebras can be characterized by the existence of a right invariant mean on a certain subspace of $\ell_{\infty}(H)$, where H is the unitary group. A fixed-point theorem for amenable C*-algebras is obtained.

1. Introduction. The following result of Haagerup ([11, Theorem 2.1]) is the main motivation for this paper. Let R be a von Neumann algebra with isometry semigroup S. Let $Bil^{\sigma}(R)$ be the space of bounded bilinear forms on R which are separately, σ -weakly continuous on R. Then R is injective if and only if there exists a mean m on S such that for all $V \in Bil^{\sigma}(R)$ and all $a \in R$, we have

(1)
$$\int_{S} V(av^*, v) dm(v) = \int_{S} V(v^*, va) dm(v).$$

Haagerup uses (1) in his proof that nuclear C^* -algebras are amenable. (Another proof which avoids (1) and the use of approximate finite dimensionality has been given by Effros ([7, 8].)

Since injectivity and amenability are equivalent for R, it is natural to ask if (1) can be interpreted as asserting the existence of a suitably invariant mean on a subspace of $\ell_{\infty}(S)$ associated with $Bil^{\sigma}(R)$. A corresponding question, of course, can be asked for amenable unital C^* -algebras with the unitary group H in place of S. In both cases, the answer is positive, and this opens the way to interpreting operator algebra amenability in terms of a classical right invariant mean (RIM), replacing the more complex notion of virtual diagonal by the more accessible and better understood notion of invariant mean.

In this paper, we examine the C^* -case; the author plans to discuss the von Neumann case in another paper.

Let A be a unital C^* -algebra, and Bil(A) be the Banach space of bounded bilinear forms on A. Let $Bil_{22}(A)$ be the subspace of completely bounded bilinear forms in Bil(A). Recall that a C^* -algebra A is called *amenable* if there exists a virtual diagonal-for the definition, see (8) belowfor A. This notion was introduced by Johnson ([14]); in his memoir [15], Johnson introduced the notion of a *strongly amenable* C^* -algebra, and Haagerup ([11]) has observed that this notion is characterized by the existence of a special kind of virtual diagonal. (See Proposition 4.) Our results can be interpreted as asserting that such virtual diagonals can be taken as arising from a RIM on spaces of functions on H.

We start by showing that amenability for A is associated with $Bil_{22}(A)$. We show in Proposition 2 that A is amenable if and only if there exists a virtual diagonal on $Bil_{22}(A)$. This is the analogue of the result of Effros ([7, 8]) that a von Neumann algebra R is amenable if and only if there exists a virtual diagonal on the subspace of completely bounded elements of $Bil^{\sigma}(R)$.

We then turn to the subspaces of $\ell_{\infty}(H)$ which support a RIM when A is amenable or strongly amenable. These spaces are quite simple to define. We define a map $\Delta : Bil(A) \to \ell_{\infty}(H)$ by

(2)
$$\Delta(V)(u) = V(u^*, u) \quad (u \in H).$$

Let B(A) be $\Delta(Bil(A)) \subset \ell_{\infty}(H)$. The subspace $B_{22}(A)$ of B(A) is defined: $B_{22}(A) = \Delta(Bil_{22}(A))$. Both $B_{22}(A), B(A)$ are invariant and contain 1. The main result of this paper is the following (Theorem 1, Theorem 2):

- (a) A is strongly amenable if and only if there exist a RIM on B(A)
- (b) A is amenable if and only if there exists a RIM on $B_{22}(A)$

In the final part of the paper, we prove a fixed-point theorem for amenable C^* -algebras. One would expect such a theorem to exist in view of the well known fact in the theory of amenable groups that such theorems are associated with invariant means on subspaces of $\ell_{\infty}(G)$. Bunce ([2, 3]) proved such a theorem for strongly amenable C^* -algebras, and this easily follows by amenable group techniques using the invariant mean result (a) above. We prove a fixed-point theorem associated with (b) above, using the notion of weakly completely bounded A-modules. Here, a locally convex space E which is a unital A-module is called weakly completely bounded if, for every $F \in E^*$ and every $x \in E$, the bilinear map F_x , where

$$F_x(a,b) = F(axb)$$

is a completely bounded bilinear form on A. This result emphasizes a theme of the paper that amenability for C^* -algebras is a completely bounded phenomenon. (An elegant account of the theory of completely bounded maps is given in [21].)

2. Amenable C*-algebras and invariant means. Let A be a unital C*algebra. Then $Bil(A) = (A \otimes A)^*$ is the Banach space of bounded bilinear forms on $A \times A$. The norm on Bil(A) can also be given by:

 $||V|| = \sup\{|V(a,b)| : a, b \in A, ||a|| = ||b|| = 1\}.$

Let $Bil_{22}(A)$ be the subspace of completely bounded elements of Bil(A). So a bilinear form V on $A \in Bil_{22}(A)$ if it is completely bounded as a bilinear map $V : A \times A \to \mathbb{C}$. (See, for example, [4].) For our purposes, such forms can be conveniently specified as follows. Let $(a, \xi) \to a\xi$ be the universal representation of A on its Hilbert space \mathcal{H} . Then (cf. [8]) $V \in Bil(A)$ is completely bounded if and only if there exist ξ, η in \mathcal{H} and $T \in B(\mathcal{H})$ such that for all $a, b \in A$,

(3)
$$V(a,b) = aTb\xi \cdot \eta.$$

We note that such a representation of V has been extended to the non-scalar case by Christensen and Sinclair ([4])-an elegant account of this is given in [22]. We also note that there are subspaces $Bil_{ij}(A)$ for $i, j \in \{1, 2\}$ which arise naturally and are discussed in [16]. These do not play a role in the present paper but are significant in the von Neumann case.

We will require another characterization of completely bounded bilinear forms in the proof of Proposition 5. For $u \in A \otimes A$, define $||u||_{22} \ge 0$ as follows:

(4)
$$||u||_{22} = \inf \left\{ ||\sum a_j a_j^*||^{\frac{1}{2}} ||\sum b_j^* b_j||^{\frac{1}{2}} : u = \sum a_j \otimes b_j \right\}.$$

ALAN L. T. PATERSON

In [10, 8], the map $\|.\|_{22}$ is shown to be a norm on $A \otimes A$ and is called the *Haagerup norm*. It is also shown that a bilinear form on $A \times A$ is completely bounded if and only if it is bounded on $A \otimes A$ for the Haagerup norm. Recent accounts of the Haagerup norm and other operator space norms are given in [1, 9].

Let $R = A^{**}$ be the enveloping von Neumann algebra of A realised on \mathcal{H} . It follows from [13, Theorem 2.3] that each $V \in Bil(A)$ extends uniquely, without change of norm to an element, also denoted V, of $Bil^{\sigma}(R)$. (The latter space is defined in the Introduction.) So we can identify Bil(A)with $Bil^{\sigma}(R)$ and can identify $Bil_{22}(A)$ with the appropriate subspace of $Bil^{\sigma}(R)$. This subspace is denoted by $Bil_{22}^{\sigma}(R)$. The elements V of $Bil_{22}^{\sigma}(R)$ are also given by the formula (3) with a, b allowed to lie in R.

We recall that Bil(A) is a dual Banach A-module with actions

(5)
$$xV(a,b) = V(a,bx) \qquad Vx(a,b) = V(xa,b).$$

Direct checking in (3) shows that $Bil_{22}(A)$ is an invariant subspace of Bil(A). There is another useful module action \circ which we postpone till later ((21)).

The next result seems to be well known, but for convenience we give the simple proof.

Proposition 1. Let $V \in Bil_{22}^{\sigma}(R)$. Then the maps $x \to Vx^*, x \to xV$ are strong operator-norm continuous from R into $Bil^{\sigma}(R)$.

Proof: If V is as in (3), then

(6)
$$||Vx^* - Vy^*|| \le ||\xi|| ||T|| ||x\eta - y\eta||,$$

(7) $||xV - yV|| \le ||\eta|| ||T||| ||x\xi - y\xi||.$

The result now follows. \Box

We now discuss amenability for A. This involves the notion of a virtual diagonal for A. Let $\pi : A \hat{\otimes} A \to A$ be the multiplication map. An element M of $(A \hat{\otimes} A)^{**}$ is called a *virtual diagonal* if, for all $a \in A$:

(8)
$$aM = Ma \ (a \in A) \quad \pi^{**}(M) = 1.$$

The algebra A is called *amenable* if there exists a virtual diagonal for A.

The subspace $\pi^*(A^*)$ can easily be identified with A^* by associating $\pi^*(\phi) = V_{\phi}$ with ϕ , where

$$V_{\phi}(a,b) = \phi(ab).$$

It is simple to check that the natural A-module structure of A^* coincides with the submodule structure that it inherits as a subspace of Bil(A), and that $A^* \subset Bil_{22}(A)$. Further, regarding $A \subset A^{**}$, the second equality of (8) becomes:

$$M|A^* = 1$$

The first equality of (8) can be reformulated:

(9)
$$v^*Mv = M \quad (v \in H).$$

Indeed, (9) is equivalent to Mv = vM for all $v \in H$, which in turn is equivalent to aM = Ma for all $a \in A$ since H spans A.

Virtual diagonals for submodules of Bil(A) containing A^* are defined in the obvious way.

There is a natural *H*-action on Bil(A) associated with the module actions of (5) and (21). We define:

(10)
$$v.V(a,b) = V(v^*a,bv)$$
 $V.v(a,b) = V(av^*,vb).$

Clearly, Bil(A) is a Banach H-module. Using (5), we have

(11)
$$v.V = vVv^*.$$

Since $Bil_{22}(A)$ is an A-submodule of Bil(A), it follows that it is also an H-submodule.

Note also that for $\phi \in A^*$, we have $v.V_{\phi} = V_{v\phi v^*}$, and since $v^*v = 1$, we also have $V_{\phi}.v = V_{\phi}$. In particular, A^* is an *H*-submodule of Bil(A). In the dual *H*-module action on A^{**} , where we regard $A \subset A^{**}$, we have v.1 = 1 = 1.v for all $v \in H$.

The actions of (10) of course dualise to give an *H*-module action on $(Bil(A))^*$. These actions will be denoted by:

$$(v, M) \to v.M$$
 $(M, v) \to M.v.$

Note that, using (11):

$$(12) M.v = v^* M v.$$

The following proposition shows that for amenability for A, we require a virtual diagonal only on $Bil_{22}(A)$.

Proposition 2. The C^* -algebra A is amenable if and only if there exists a virtual diagonal on $Bil_{22}(A)$.

Proof: Suppose that there exists a virtual diagonal M on the space $Bil_{22}(A)$. Let G be the unitary group of R. Let $V \in Bil_{22}^{\sigma}(R)$. Let $v \in G$ and $\{u_{\alpha}\}$ be a net in H such that $u_{\alpha} \to v$ strongly in R ([23, Theorem 2.3.3]). Now since the strong and weak operator topologies coincide on G ([26, p. 84]), it follows that the map $u \to u^*$ is strong operator continuous, and using Proposition 1 and the triangular inequality, we have $\|u_{\alpha}^*Vu_{\alpha} - v^*Vv\| \to 0$. Hence

$$vMv^*(V) = \lim u_{\alpha}Mu^*_{\alpha}(V) = M$$

and so identifying Bil(A) with $Bil_{22}^{\sigma}(R)$, we see that M is a virtual diagonal on $Bil_{22}^{\sigma}(R)$. By a result of [7, 8], R is amenable and so injective. So Ais amenable (=nuclear) by the well-known result (due to Connes and Choi-Effros): A is nuclear if and only if A^{**} is injective.

The rest of the proof is trivial.

We now discuss invariant means on groups. Let G be a group. Convolution on $\ell_1(G)$ dualises to give a G-action on $\ell_{\infty}(G)$:

$$(fs_0)(s) = f(s_0s)$$
 $(s_0f)(s) = f(ss_0)$

for all $s_0, s \in G$ and all $f \in \ell_{\infty}(G)$. A right invariant mean (RIM) on $\ell_{\infty}(G)$ is a mean (=state) on $\ell_{\infty}(G)$ which is right invariant under the right dual G-action on $(\ell_{\infty}(G))^*$. So a mean m on G is a RIM if and only if

$$m(sf) = m(f)$$

for all $f \in \ell_{\infty}(G)$ and all $s \in G$. The group G is called *right amenable* if there exists a RIM on $\ell_{\infty}(G)$. Left amenability and two-sided amenability for G are defined in the obvious ways. Recent accounts of amenability theory are given in [19, 24, 25].

A subspace X of $\ell_{\infty}(G)$ is called *left invariant* if $sf \in X$ for all $f \in X$ and all $s \in G$. If X is left invariant and contains 1, then a RIM on X is an element $m \in X^*$ satisfying m(1) = 1 = ||m|| and m(sf) = m(f) for all $f \in X$ and all $s \in G$. Similarly we can define left invariant means (LIM's) for right invariant unital subspaces of $\ell_{\infty}(G)$. We will be concerned with invariant means on subspaces of $\ell_{\infty}(H)$. Since H is so large and (usually) highly non-commutative, it is rarely going to be amenable, and we are interested in the existence of invariant means on certain smaller, though significant, subspaces of $\ell_{\infty}(H)$.

The subspaces $B_{22}(A)$ and B(A) that will concern us are associated with the following map $\Delta : Bil^{\sigma}(A) \to \ell_{\infty}(S)$:

(13)
$$\Delta(V)(v) = V(v^*, v).$$

We define the following subspaces of $\ell_{\infty}(G)$:

(14)
$$B(A) = \Delta(Bil(A))$$
 $B_{22}(A) = \Delta(Bil_{22}(A)).$

We give H the relative $\sigma(A, A^*)$ (i.e. the weak) topology. Then ([20]) H is a topological group. The invariant, unital C^* -algebra LUC(H) (resp RUC(H)) is the set of functions $f \in \ell_{\infty}(H)$ such that the map $s \to sf$ (resp $s \to fs$) is norm continuous. Since $1 \in H$, each $f \in LUC(H)$ is continuous.

We now collect some simple facts relating to the spaces B(A) and $B_{22}(A)$.

Proposition 3. (a) The map Δ is an *H*-equivariant, norm decreasing, linear map onto B(A). Further, the spaces $B(A), B_{22}(A)$ are invariant subspaces of $\ell_{\infty}(H)$, and $\Delta(A^*) = \mathbb{C}1$.

- (b) $\Delta^*(m)$ is a virtual diagonal for every RIM m on B(A).
- (c) Both subspaces B(A) and $B_{22}(A)$ are closed under the complex conjugation map $f \to \overline{f}$.
- (d) $1 \in B_{22}(A) \subset LUC(H).$

Proof: (a) For $V \in Bil(A)$, $u, v \in H$, we have

$$\begin{split} \Delta(V.v)(u) &= V.v(u^*, u) = V(u^*v^*, vu) = \Delta(V)(vu) = \Delta(V)v(u) \\ \Delta(v.V)(u) &= v.V(u^*, u) = V(v^*u^*, uv) = \Delta(V)(uv) = v\Delta(V)(u) \end{split}$$

so that Δ is *H*-equivariant. Obviously, Δ is norm-decreasing and linear. Since Δ is equivariant and the spaces $Bil(A), Bil_{22}(A)$ are *H*-modules, it follows that B(A) and $B_{22}(A)$ are invariant. Finally, if $\phi \in A^*$, then

(15)
$$\Delta(V_{\phi})(v) = V_{\phi}(v^*, v) = \phi(v^*v) = \phi(1)$$

so that $\Delta(V_{\phi}) = \phi(1)1$.

(b) If m is a RIM on B(A), then, for $v \in H$, $\phi \in A^*$, using (a), (12) and (15):

$$v^*\Delta^*(m)v = \Delta^*(m).v = \Delta^*(mv) = \Delta^*(m)$$

$$\Delta^*(m)(V_{\phi}) = m(\Delta(V_{\phi})) = \phi(1) = 1(V_{\phi}).$$

So using (9), $\Delta^*(m)$ is a virtual diagonal.

(c) For $V \in Bil(A)$, define $V^* \in Bil(A)$ by:

$$V^*(a,b) = \overline{V(b^*,a^*)}.$$

Then $\overline{\Delta(V)} = \Delta(V^*)$, and B(A) is closed under complex-conjugation. The same property holds for $B_{22}(A)$: we observe that the conjugate \overline{f} of $f \in B_{22}(A)$ is obtained by replacing the T in (3) by its adjoint and interchanging ξ and η .

(d) Since $A^* \subset Bil_{22}(A)$, it follows from (a) that $1 \in B_{22}(A)$. If $V \in Bil_{22}(A)$, then for $u, v \in H$,

(16)
$$||u\Delta(V) - v\Delta(V)|| \le ||Vu^* - Vv^*|| + ||uV - vV||.$$

Now $u_{\delta} \to u$ weakly in A if and only if $u_{\delta} \to u$ in the strong operator topology of $R = A^{**}$. It follows from (16) and Proposition 1 that $\Delta(V) \in LUC(H)$. \Box

The next result gives an invariant mean characterization of amenable C^* -algebras.

Theorem 1. The following statements are equivalent:

- (a) A is amenable
- (b) there exists a RIM on $B_{22}(A)$
- (c) there exist a RIM on LUC(H)

Proof: The equivalence of (a) and (c) follows by [20]. Since $B_{22}(A) \subset LUC(H)$ by (d) of Proposition 3, we have that (c) implies (b). Now suppose that (b) holds and let $R = A^{**}$. Let m be a RIM on $B_{22}(A)$. By (3), each $f \in B_{22}(A)$ is of the form $f_{T\xi\eta}$, where:

(17)
$$f_{T\xi\eta}(u) = u^* T u \xi. \eta.$$

558

For $g \in B_{22}(A)$, define $g^* \in \ell_{\infty}(H)$ by setting $g^*(u) = f(u^{-1})$, and let $Y = \{g^* : g \in B_{22}(A)\}$. Then m^* , where $m^*(g^*) = m(g)$, is a left invariant mean (LIM) on Y. Now H is strongly dense in the unitary group G of R, and G is a topological group in the strong operator topology ([12]). From (17), each $g = f_{T\xi\eta}$ extends uniquely by continuity to a continuous function g' on G-just allow u in (17) to belong to G. Let $Y' = \{g' : g \in Y\}$. Then $Y' \subset RUC(G)$: this is easily checked as in Proposition 1. (See also [12].) As in [20, Proposition 1], there exists an LIM on Y', and a result of de la Harpe (cf [19, p. 78]) gives that R is injective. Hence A is nuclear and so amenable. So (b) implies (a).

We will show in Theorem 2 below that strong amenability for A is equivalent to the existence of a RIM on B(A). For convenience, we write $\overline{co}S$ for the weak^{*} closure of the convex hull of a subset S of a Banach space dual X^* , and for any Banach space X, will regard $X \subset X^{**}$.

Recall that ([15]) the algebra A is called *strongly amenable* if, whenever X is a unital Banach A-module and $D: A \to X^*$ is a derivation, then there exists α_0 in $\overline{co}\{u^*D(u): u \in H\}$ such that $D(a) = a\alpha_0 - \alpha_0 a$ for all $a \in A$. Haagerup ([11, Lemma 3.4 seq]) remarks that the following characterization of strong amenability holds.

Proposition 4. The C^* -algebra A is strongly amenable if and only if there exists a virtual diagonal M in $\overline{co}\{u^* \otimes u : u \in H\}$.

Theorem 2. The C^* -algebra A is strongly amenable if and only if there exists a RIM on B(A).

Proof: Suppose that *m* is a RIM on B(A). From (b) of Proposition 3, $\Delta^*(m)$ is a virtual diagonal for *A*. For $u \in G$, let $\hat{u} \in \ell_{\infty}(G)^*$ be given by: $\hat{u}(\phi) = \phi(u)$. It is easily checked that $\Delta^*(\hat{u}) = u^* \otimes u$. Since *m* is in $\overline{co}\{\hat{u}: u \in G\}$, it follows that $\Delta^*(m)$ is in $\overline{co}\{u^* \otimes u: u \in G\}$ in $(A \otimes A)^*$. By Proposition 4, *A* is strongly amenable.

Conversely, suppose that A is strongly amenable, and let M be as in Proposition 4. Then there exists a net $\{f_{\delta}\}$ in P(G) such that in the weak^{*} topology

$$\left(\sum_{u\in G}f_{\delta}(u)(u^*\otimes u)\right)\to M.$$

In particular, if $V \in Bil(A)$, then

(18)
$$(\sum f_{\delta}(u)\hat{u})(\Delta(V)) = (\sum f_{\delta}(u)(u^* \otimes u))(V)$$

(19) $\rightarrow M(V).$

Define $m(\Delta(V)) = M(V)$. Then *m* is well-defined and is a mean on B(A). Let $v \in G$. By (9) and (11), M(v.V) = M(V). Further, by (a) of Proposition 3, $\Delta(v.V) = v\Delta(V)$.

It follows that m is a RIM. \Box

We conclude by discussing how some characterizations of amenable and strongly amenable C^* -algebras can be interpreted as fixed-point or extension theorems of classical amenability type. In particular, using modules with a certain completely bounded property, we will prove a fixed-point theorem for amenable C^* -algebras which fills a gap in the literature.

We begin with strongly amenable C^* -algebras for which the literature is more complete. In [2, 3], Bunce gives six characterizations of strongly amenable C^* -algebras. An account of the results of Bunce is given in [25, Chapter 2]. Three of these can be interpreted as fixed-point theorems for the unitary group H analogous to the classic fixed-point theorem of Day. A fourth can be interpreted as a stronger version of a result in [17] which is valid for amenable Banach algebras. (See [6] for an elegant proof.) The remaining two give invariant extension characterizations. All of these characterizations can be readily proved using Theorem 2 and the approach of the fixed-point theorems for amenable groups ([19, (2.16) ff.]). We are particularly interested in the following fixed-point theorem of Bunce.

Theorem 3. The C^* -algebra A is strongly amenable if and only if whenever X is a unital Banach A-module and S is weak*-closed convex subset of X^* such that $v^*Sv = S$ for all $v \in H$, then there exists $g \in S$ such that $v^*gv = g$ for all $v \in H$.

Bunce gives two characterizations of amenable C^* -algebras. As in the strongly amenable case, one of these is of the Khelemskii-type and the other is an invariant extension result. Both have Banach algebra versions, the extension version appearing in [18]. We now discuss a fixed-point theorem for amenable C^* -algebras corresponding to Theorem 3.

Let E be a locally convex space which is a unital A-module. The module E is called *weakly completely bounded* if, for every $F \in E^*$ and

560

every $x \in E$, the bilinear map F_x , where

(20)
$$F_x(a,b) = F(axb),$$

is a completely bounded bilinear form on A.

If X is a completely bounded normed A-module in the sense of ([5]), then X is weakly completely bounded.

We can make the Banach space $A \hat{\otimes} A$ into a unital Banach A-module with the actions \circ :

(21)
$$a \circ (b \otimes c) = b \otimes ac \quad (b \otimes c) \circ a = ba \otimes c.$$

These actions are discussed in [2, 3].

Proposition 5. Let $E = Bil_{22}(A)$ with the relative weak*-topology which it inherits as a subspace of $(A \otimes A)^*$. Then E is a weakly completely bounded A-submodule of $(A \otimes A)^*$ under the dual actions \circ for (21).

Proof: The fact that $a \circ V \circ a' \in E$ for $a, a' \in A$ and $V \in E$ follows by expressing V in the form of (3) and checking that

(22)
$$a \circ V \circ a'(b \otimes c) = b(aTa')c\xi.\eta$$

which is also of the form of (3). So E is an A-module. Now the dual of E is just $(A \otimes A)/E^{\perp}$. If F is the restriction of $(b \otimes c)$ to E, then using (22),

(23)
$$F_V(a \otimes a') = aTa'(c\xi).b^*\eta$$

which is also of the form of (3). Now let F be a general element of $A \hat{\otimes} A$. We can write

$$F = \sum b_i \otimes c_i \quad (\sum ||b_i|| ||c_i|| < \infty).$$

Let $u = \sum a_j \otimes a'_j \in A \otimes A$. Then using (23),

$$\begin{aligned} |F_{V}(u)| &= |\sum_{i,j} a_{j}Ta'_{j}c_{i}\xi.b_{i}^{*}\eta| \\ &\leq ||T||\sum_{i}\sum_{j} ||a'_{j}c_{i}\xi|| ||a_{j}^{*}b_{i}^{*}\eta|| \\ &\leq ||T||\sum_{i}(\sum_{j} ||a'_{j}c_{i}\xi||^{2})^{\frac{1}{2}}(\sum_{j} ||a_{j}^{*}b_{i}^{*}\eta||^{2})^{\frac{1}{2}} \\ &= ||T||\sum_{i}((\sum_{j} a'_{j}^{*}a'_{j})c_{i}\xi.c_{i}\xi)^{\frac{1}{2}}((\sum_{j} a_{j}a_{j}^{*})b_{i}^{*}\eta.b_{i}^{*}\eta)^{\frac{1}{2}} \\ &\leq ||T||\sum_{i} ||\sum_{j} a'_{j}^{*}a'_{j}||^{\frac{1}{2}} ||c_{i}\xi|| ||\sum_{j} a_{j}a_{j}^{*}||^{\frac{1}{2}} ||b_{i}^{*}\eta||. \end{aligned}$$

It follows that

$$|F_V(u)| \le ||T|| (\sum_i ||b_i|| ||c_i||) ||\xi|| ||\eta|| ||u||_{22}.$$

Hence V is bounded for the Haagerup norm (4) and so is completely bounded. \Box

Theorem 4. The C^* -algebra A is amenable if and only if H has the fixedpoint property: whenever X is a weakly completely bounded A-module and S is a non-empty, compact, convex subset of X such that $v^*Sv = S$ for all $v \in H$, then there exists $h \in S$ such that $v^*hv = h$ for all $v \in H$.

Proof: Suppose that A is amenable. Let X be a weakly completely bounded A-module and S be a non-empty compact, convex, invariant subset of X. Let $\alpha \in X^*$ and $g \in S$. Then in the notation of (20), $\alpha_g \in Bil_{22}(A)$. By Theorem 1, there exists a RIM m on $B_{22}(A)$. Since $\Delta(\alpha_g) \in B_{22}(A)$, we can define $h: X^* \to \mathbf{C}$ by:

$$h(\alpha) = \int_{H} \Delta(\alpha_g) dm = \int_{H} \alpha(u^*gu) dm(u).$$

Clearly, h is linear, and by approximating m by convex combinations of point masses, we can, using the invariance of S and regarding the elements of S as functionals on X^* , find a net $\{g_{\delta}\}$ in S such that $g_{\delta} \to h$ pointwise on X^* . Since S is weakly compact, it follows that $h \in S$. Now for $v \in H$,

$$v\Delta(\alpha_g)(u) = \Delta(\alpha_g)(uv) = (v\alpha v^*)(u^*gu)$$

so that

$$h(v\alpha v^*) = m(v\Delta(\alpha_g)) = m(\Delta(\alpha_g)) = h(\alpha).$$

Hence $v^*hv = h$ for all $v \in H$.

Conversely suppose that A has the fixed-point property of the theorem. The amenability of A will follow from Theorem 1 once we have shown that $B_{22}(A)$ has a RIM. For this purpose, we will use [19, Theorem (2.13)]. The latter asserts the existence of a RIM provided we can show that $B_{22}(A)$ is right introverted (defined below) and that for each $\phi \in B_{22}(A)$, there exists a constant function in the pointwise closure of the set

$$C_{\phi} = co\{\phi v : v \in H\}.$$

 $\mathbf{562}$

We will establish these two facts in turn.

Let *m* be a mean on *H*. Let $V \in Bil_{22}(A)$. We wish to define an element $V * m \in Bil_{22}(A)$ such that for $v \in H$, we have $V * \delta_v = V.v$ (as in (10)). Indeed, for $a, b \in A$, we have $bVa \in Bil_{22}^{\sigma}(R)$, and can thus define

(24)
$$V * m(a,b) = \int_{H} V(au^*,ub)dm(u).$$

It is obvious that $V * m \in Bil(A)$ and that $V * \delta_v = V.v.$ In fact, by approximating $m \ weak^*$ by convex combinations of elements δ_v , we see that if V satisfies (3), then V * m satisfies (3) with T replaced by some ultraweak cluster point of the set $co\{v^*Tv : v \in H\}$ in $B(\mathcal{H})$. So $V * m \in Bil_{22}^{\sigma}(R)$.

A left invariant subspace Y of $\ell_{\infty}(H)$ is called *right introverted* ([19, (2.6)]) if for each $F \in \ell_{\infty}(H)$ and $\phi \in Y$, we have $\phi F \in Y$, where $\phi F(v) = F(v\phi)$. We claim that $Y = B_{22}(A)$ is right introverted. Indeed, if m and V are as above, then

$$\Delta(V)m(v) = m(v\Delta(V)) = \int_{H} v\Delta(V)(u)dm(u)$$
$$= \int_{H} V(v^*u^*, uv)dm(u) = V * m(v^*, v) = \Delta(V * m)(v).$$

Since $\ell_{\infty}(H)^*$ is spanned by means, it follows that $B_{22}(A)$ is right introverted.

We now turn to the second fact to be established. By Proposition 5, $Bil_{22}(A)$ is a weakly completely bounded A-module with the weak*topology and the action dual to that in (21). Note that as in (11), V.v = $v^* \circ V \circ v$. Let $V \in Bil_{22}(A)$. Let $S = \overline{co}\{v^* \circ V \circ v : v \in H\}$ in $(A \otimes A)^*$. As in the preceding paragraph, S is a weak*-compact convex subset of $Bil_{22}(A)$. Of course, $v^* \circ S \circ v = S$. By hypothesis, there exists $W \in S$ such that W.v = W for all $v \in H$. Further there exists a net $\{g_{\delta}\}$ in P(H)such that $V.g_{\delta} \to W$. Then

$$\Delta(V)g_{\delta}(u) = V.g_{\delta}(u^* \otimes u) \to W(u^*, u)$$

so that $\Delta(V)g_{\delta} \to \Delta(W)$ pointwise on *H*. Since

$$\Delta(W)(u) = W(u^*, u) = W.u(1, 1) = W(1, 1)$$

it follows that $\Delta(W)$ is a constant function.

This completes the proof. \Box

Acknowledgements. The author is grateful to Ed Effros, David Blecher, Vern Paulsen, Zhong-Jin Ruan, Allan Sinclair and Roger Smith for helpful discussions.

References

- 1. D. P. Blecher and V. I. Paulsen, Tensor Products of Operator Spaces, preprint (1990).
- J. W. Bunce, Representations of strongly amenable C*-algebras, Proc. Amer. Math. Soc. 32 (1972), 241-246.
- J. W. Bunce, Characterizations of amenable and strongly amenable C*-algebras, Pacific J. Math. 56 (1972), 563-572.
- 4. E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Functional Analysis 72 (1987), 151-181.
- 5. E. Christensen, E. G. Effros and A. M. Sinclair, Completely bounded multilinear maps and C^{*}-algebraic cohomology, Invent. Math. 90 (1987), 151-181.
- P. C. Curtis and R. J. Loy, Amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), 89-104.
- 7. E. G. Effros, Amenability and virtual diagonals for von Neumann algebras, J. Functional Analysis 78 (1988), 137-153.
- E. G. Effros and A. Kishimoto, Module maps and Hochschild-Johnson Cohomology, Indiana Math. J. 36 (1987), 257-276.
- 9. E. G. Effros and Z. -J. Ruan, Recent developments in operator spaces, Preprint (1991).
- 10. U. Haagerup, Decomposition of completely bounded maps on operator algebras, unpublished manuscript (1980).
- 11. U. Haagerup, All nuclear C^{*}-algebras are amenable, Invent. Math. 74 (1983), 305-319.
- 12. P. de la Harpe, Moyennabilité du groupe unitaire et proprié té P de Schwartz des algèbres de von Neumann, Springer-Verlag, New York 725 (1979).
- B. E. Johnson, R. V. Kadison and J. R. Ringrose, Cohomology of operator algebras III: Reduction to normal cohomology, Bull. Soc. Math. France 100 (1972), 73-96.
- 14. B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972), 685-698.
- 15. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- S. Kaijser and A. Sinclair, Projective tensor products of C*-algebras, Math. Scand. 55 (1984), 161-187.
- 17. A. Ya. Khelemskii, Flat Banach modules and amenable algebras, Trans. Moscow Math. Soc. (1984); Amer. Math. Soc. Translations (1985), 199-224.

564

- A. T. Lau, Characterizations of amenable Banach algebras, Proc. Amer. Math. Soc. 70 (1978), 156-160.
- 19. A. L. T. Paterson, *Amenability*, Mathematical Surveys and Monographs, No. 29, American Mathematical Society, Providence, RI (1988).
- 20. A. L. T. Paterson, Nuclear C^* -algebras have amenable unitary groups, to appear, Proc. Amer. Math. Soc.
- 21. V. I. Paulsen, Completely Bounded Maps and Dilations, Pitman Research Notes in Math., Longman, London (1986).
- 22. V. I. Paulsen and R. Smith, Multilinear maps and tensor norms on operator systems, J. Functional Analysis 73 (1987), 258-276.
- G. K. Pederson, C*-algebras and their automorphism groups, Academic Press, London (1979).
- 24. J. -P. Pier, Amenable locally compact groups, Wiley, New-York (1984).
- 25. J. -P. Pier, Amenable Banach algebras, Pitman Research Notes in Mathematics Series, No. 172, Longman (1988).
- 26. M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New- York (1979).

Department of Mathematics University of Mississippi University, MS 38677

Received July 2, 1991