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INVARIANT MEAN CHARACTERIZATIONS 

OF AMENABLE C*-ALGEBRAS 

ALAN T. PATERSON 

Abstract. It is shown that unital amenable and strongly amenable 
C*-algebras can be characterized by the existence of a right in- 
variant mean on a certain subspace of œo•(H), where H is the 
unitary group. A fixed-point theorem for amenable C*-algebras 
is obtained. 

1. Introduction. The following result of Haagerup ([11, Theorem 2.1]) is 
the main motivation for this paper. Let R be avon Neumann algebra with 
isometry semigroup S. Let Bil•(R) be the space of bounded bilinear forms 
on R which are separately, a-weakly continuous on R. Then R is injectire 
if and only if there e•cists a mean m on S such that for all V E Bil•(R) and 
all a • R, we have 

(1) s V(av*, v)dm(v) -- fs V(v*, va)dm(v). 
Haagerup uses (1) in his proof that nuclear C*-algebras are amenable. (An- 
other proof which avoids (1) and the use of approximate finite dimension- 
ality has been given by Effros ([7, 8].) 

Since injectivity and amenability are equivalent for R, it is natural to 
ask if (1) can be interpreted as asserting the existence of a suitably invariant 
mean on a subspace of go½(S) associated with Bil•(R). A corresponding 
question, of course, can be asked for amenable unital C*-algebras with the 
unitary group H in place of S. In both cases, the answer is positive, and 
this opens the way to interpreting operator algebra amenabihty in terms of 
a classical right invariant mean (RIM), replacing the more complex notion 
of virtual diagonal by the more accessible and better understood notion of 
invariant mean. 
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In this paper, we examine the C*-case; the author plans to discuss the 
von Neumann case in another paper. 

Let A be a unital C*-algebra, and Bil(A) be the Banach space of 
bounded bilinear forms on A. Let Bil22(A) be the subspace of completely 
bounded bilinear forms in Bil(A). Recall that a C*-algebra A is called 
amenable if there exists a virtual diagonal-for the definition, see (8) below- 
for A. This notion was introduced by Johnson ([14]); in his memoir [15], 
Johnson introduced the notion of a strongly amenable C*-algebra, and 
Haagerup ([11]) has observed that this notion is characterized by the exis- 
tence of a special kind of virtual diagonal. (See Proposition 4.) Our results 
can be interpreted as asserting that such virtual diagonals can be taken as 
arising from a RIM on spaces of functions on H. 

We start by showing that amenability for A is associated with Bil22 (A). 
We show in Proposition 2 that A is amenable if and only if there exists a 
virtual diagonal on Bil22(A). This is the analogue of the result of Effros 
([7, 8]) that avon Neumann algebra R is amenable if and only if there 
exists a virtual diagonal on the subspace of completely bounded elements 
of 

We then turn to the subspaces of œ• (H) which support a RIM when A 
is amenable or strongly amenable. These spaces are quite simple to define. 
We define a map A: Bil(A) --, œ•(H) by 

(2) 5(V)(u) = V(u*, u) (u ß 

Let B(A) be A(Bil(A)) C œoo(H). The subspace B22(A) of B(A) is defined: 
B22(A) = A(Bil22(A)). Both B22(A),B(A) are invariant and contain 1. 
The main result of this paper is the following (Theorem 1, Theorem 2): 

(a) A is strongly amenable if and only if there exist a RIM on 
B(A) 

(b) A is amenable if and only if there exists a RIM on B22(A) 
In the final part of the paper, we prove a fixed-point theorem for 

amenable C*-algebras. One would expect such a theorem to exist in view 
of the well known fact in the theory of amenable groups that such theorems 
are associated with invariant means on subspaces of too(G). Bunce ([2, 31) 
proved such a theorem for strongly amenable C*-algebras, and this easily 
follows by amenable group techniques using the invariant mean result (a) 
above. We prove a fixed-point theorem associated with (b) above, using 
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the notion of weakly completely bounded A-modules. Here, a locally convex 
space E which is a unital A-module is called weakly completely bounded if, 
for every F • E* and every x • E, the bilinear map Fx, where 

Fx(a,b) = F(axb) 

is a completely bounded bilinear form on A. This result emphasizes a theme 
of the paper that amenability for C*-algebras is a completely bounded phe- 
nomenon. (An elegant account of the theory of completely bounded maps 
is given in [21].) 

2. Amenable C*-algebras and invariant means. Let A be a unital C*- 
algebra. Then Bil(A) -- (A•A)* is the Banach space of bounded bilinear 
forms on A x A. The norm on Bil(A) can also be given by: 

Let Bil22(A) be the subspace of completely bounded elements of Bil(A). So 
a bilinear form V on A • Bil22(A) if it is completely bounded as a bilinear 
map V: A x A -• C. (See, for example, [4].) For our purposes, such forms 
can be conveniently specified as follows. Let (a,•) • a• be the universal 
representation of A on its Hilbert space 7-/. Then (cf. [8]) V • Bil(A) is 
completely bounded if and only if there exist •, q in 7-/and T • B(7-/) such 
that for all a, b • A, 

(a) 

We note that such a representation of V has been extended to the non-scalar 
case by Christensen and Sinclair ([4])-an elegant account of this is given in 
[22]. We also note that there are subspaces Bilij(A) for i,j • •1,2) which 
arise naturally and are discussed in [16]. These do not play a role in the 
present paper but are significant in the yon Neumann case. 

We will require another characterization of completely bounded bilin- 
ear forins in the proof of Proposition 5. For u • A © A, define [[u[[22 _• 0 as 
follows: 

(4) u 22=inf{ Eajaj -}ll•b:bjll«'u=Ea5 ©bj}' 
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In [10, 8], the map 11-1122 is shown to be a norm on A © A and is 
called the Haagerup norm. It is also shown that a bilinear .form on A x A is 
completely bounded if and only if it is bounded on A © A for the Haagerup 
norm. Recent accounts of the Haagerup norm and other operator space 
norms are given in [1, 9]. 

Let R = A** be the enveloping von Neumann algebra of A realised 
on 7/. It follows from [13, Theorem 2.3] that each V e Bil(A) extends 
uniquely, without change of norm to an element, also denoted V, of Bil•(R). 
(The latter space is defined in the Introduction.) So we can identify Bil(A) 
with Bil•(R) and can identify Bil22(A) with the appropriate subspace 
of Bilø(R). This subspace is denoted by Bil•2(R ). The elements V of 
Bil•2(R ) are also given by the formula (3) with a,b allowed to lie in R. 

We recall that Bil(A) is a dual Banach A-module with actions 

(•) xV(a, b) - V(a, bx) Vx(a, b) - V(xa, b). 

Direct checking in (3) shows that Bil22(A) is an invariant subspace of 
Bil(A). There is another useful module action o which we postpone till 
later ((21)). 

The next result seems to be well known, but for convenience we give 
the simple proof. 

Proposition 1. Let V • Bil•2(R ). Then the maps x • Vx*, x • xV are 
strong operator-norm continuous from R into Bil•(R). 

Proof.' If V is as in (3), then 

(•) 
(7) 

IIVx* - Vy*11 • I1•11 IITII IIx•- Y•11, 
IIxV- yVII • I1•11 IITII IIx•- yell, 

The result now follows. [] 

We now discuss amenability for A. This involves the notion of a virtual 
diagonal for A. Let •r: A(•A -• A be the multiplication map. An element 
M of (A•)A)** is called a virtual diagonal if, for all a • A: 

(8) aM- Ma (a e A) 7r**(M)-l. 

The algebra A is called amenable if there exists a virtual diagonal for A. 
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The subspace •r*(A*) can easily be identified with A* by associating 
•r*(;b)- V½ with ;b, where 

= 

It is simple to check that the natural A-module structure of A* coincides 
with the submodule structure that it inherits as a subspace of Bil(A), and 
that A* C Bil22(A). Further, regarding A C A**, the second equality of 
(8) becomes: 

The first equality of (8) can be reformulated: 

(9) v*Mv= M (v ß H). 

Indeed, (9) is equivalent to Mv = vM for all v ß H, which in turn is 
equivalent to aM = Ma for all a ß A since H spans A. 

Virtual diagonals for submodules of Bil(A) containing A* are defined 
in the obvious way. 

There is a natural H-action on Bil(A) associated with the module 
actions of (5) and (21). We define: 

b)= 

Clearly, Bil(A) is a Banach H-module. Using (5), we have 

(11) v.V =vVv*. 

Since Bil22(A) is an A-submodule of Bil(A), it follows that it is also an 
H-submodule. 

Note also that for ;b ß A*, we have v.V•, = Vvcv-, and since v*v = 1, 
we also have V•.v = V•. In particular, A* is an H-submodule of Bil(A). 
In the dual H-module action on A**, where we regard A C A**, we have 
v.l = l = l.v for all v ß H. 

The actions of (10) of course duahse to give an H-module action on 
(Bil(A))*. These actions will be denoted by: 

(v,M) -• v.M (M, v) -• M.v. 

Note that, using (11): 

(12) M.v = v*Mv. 

The following proposition shows that for amenability for A, we require a 
virtual diagonal only on Bil22(A). 
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Proposition 2. The C*-algebra A is amenable if and only if there exists 
a virtual diagonal on Bil22(A). 

Proof'. Suppose that there exists a virtual diagonal M on the space 
Bil22(A). Let G be the unitary group of R. Let V ß Bil•2(R ). Let 
v ß G and {u•} be a net in H such that us -• v strongly in R ([23, The- 
orem 2.3.3]). Now since the strong and weak operator topologies coincide 
on G ([26, p. 84]), it follows that the map u -• u* is strong operator 
continuous, and using Proposition i and the triangular inequality, we have 
u*•Vuo• - v* Vv[[ --• O. Hence 

vMv*(V) - limu,•Mu*•(V) = M 

and so identifying Bil(A) with Bil•2(R), we see that M is a virtual diagonal 
on Bil•aR ). By a result of [7, 8], R is amenable and so injective. So A 
is amenable (=nuclear) by the well-known result (due to Connes and Choi- 
Effros): A is nuclear if and only if A** is injectire. 

The rest of the proof is trivial. [] 
We now discuss invariant means on groups. Let G be a group. Con- 

volution on t?x (G) dualises to give a G-action on 

(fso)(s)-- f(sos) (sof)(s)-- f(sso) 

for all so,s ß G and all f ß t?•(G). A right invariant mean (RIM) on 
t?•½(G) is a mean (=state) on t?•½(G) which is right invariant under the 
right dual G-action on (t•½(G))*. So a mean m on G is a RIM if and only 
if 

m(sf)-m(f) 

for all f ß t•½(G) and all s ß G. The group G is called right amenable if 
there exists a RIM on t•½(G). Left amenability and two-sided amenability 
for G are defined in the obvious ways. Recent accounts of amenability 
theory are given in [19, 24, 25]. 

A subspace X of t•½(G) is ca.lied left invariant if sf ß X for all f ß X 
and all s ß G. If X is left invariant and contains 1, then a RIM on X is 
an element m ß X* satisfying re(l) = i = Ilmll and m(sf) = re(f) for all 
f ß X and all s ß G. Similarly we can define left invariant means (LIM's) 
for right invariant unital subspaces of t?•(G). We will be concerned with 
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invariant means on subspaces of œoo(H). Since H is so large and (usually) 
highly non-commutative, it is rarely going to be amenable, and we are 
interested in the existence of invariant means on certain smaller, though 
significant, subspaces of/?•(H). 

The subspaces B22(A) and B(A) that will concern us are associated 
with the following map A: Bil•(A) -•/?•(S): 

(13) zx(v)½) = v½*,,O. 

We define the following subspaces of œ•(G): 

(14) B(A) = A(Bil(A)) B22(A) = A(Bil22(A)). 

We give H the relative a(A,A*) (i.e. the weak) topology. Then ([20]) 
H is a topological group. The invariant, unital C*-algebra LUC(H) (resp 
RUC(H)) is the set of functions f &/?•(H) such that the map s -• sf (resp 
s -• rs) is norm continuous. Since 1 & H, each f • LUC(H) is continuous. 

We now collect some simple facts relating to the spaces B(A) and 
B22(A). 

Proposition 3. (a) The map A is an H-equivariant, norm decreasing, 
//near map onto B(A). Further, the spaces B(A),B22(A) are invariant 
subspaces of •(H), and A(A*) = C1. 

(b) A*(m) is a uirtual diagonal for euery RIM m on B(A). 
(c) Both subspaces B(A) and B22(A) are dosed under the 

complex conjugation map f -• f. 
(d) 1 e B22(A) C LUC(H). 

Proof: (•) •or V e mr(.4), u,,• e n, w• h•v• 

a(v.•)(•) = v.•(•*, •)= v(•*•*, •) = a(v)(•)= a(v)•(•) 
a(•.v)(•) = •.v(•*, •) = v(•*•*, •) = a(v)(•) = •a(v)(•) 

so that A is H-equivariant. Obviously, A is norm-decreasing and linear. 
Since A is equivariant and the spaces Bil(A),Bi122(A) are H-modules, it 
follows that B(A) and B22(A) are invariant. Finally, if •b e A*, then 

(15) A(V•)(v) = V•(v*, v) = •)(v*v) = •b(1) 
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so that A(V•) = •b(1)1. 
(b) If m is a RIM on B(A), then, for v e H, •b e A*, using (a), (12) 

and (15)' 

v*a*(•)v = a*(•).v = a*(mv) = 
A*(m)(V+) = m(A(V+)) = •5(1) = I(V,). 

So using (9), A* (m) is a virtual diagonal. 
(c) For V e BiI(A), define V* • BiI(A) by: 

v*½,•) = v(•,,•,). 

Then A(V)= A(V*), and B(A) is closed under complex-conjugation. The 
same property holds for B22(A): we observe that the conjugate f of f • 
B22 (A) is obtained by replacing the T in (3) by its adjoint and interchanging 
• and 9. 

(d) Since A* C Bi122(A), it follows from (a) that 1 • B22(A). If 
V • Bi122(A), then for u, v • H, 

(16) uA(V) - •A(V) • IIVu* - v•*11 + uV - vV . 

Now u, • u weakly in A if and only if u, -• u in the strong operator 
topology of R - A**. It follows from (16) and Proposition I that A(V) • 
•vc(•/). [] 

The next result gives an invariant mean characterization of amenable 
C*-algebras. 

Theorem 1. The following statements are equivalent: 

(a) A is amenable 
(b) ,he•e e•t• • • o• •(•) 
(c) there exist a RIM on LUC(H) 

Proof: The equivalence of (a) and (c) follows by [20]. Since B22(A) C 
LUC(H) by (d) of Proposition 3, we have that (c) implies (b). Now suppose 
that (b) holds and let R- A**. Let m be a RIM on B2•(A). By (3), each 
f e B•(A) is of the form fT•n where: 

(17) fT•n(u) = u*Tu•.rl. 
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For g 6 B22(A), define g* 6 too(H) by setting g*(u) = f(u-1), and let 
Y ='{g*: g 6 B22(A)}. Then m*, where m*(g*) = re(g), is a left invariant 
mean (LIM) on Y. Now H is strongly dense in the unitary group G of R, 
and G is a topological group in the strong operator topology ([12]). From 
(17), each g = fT(, extends uniquely by continuity to a continuous function 
g' on G-just allow u in (17) to belong to G. Let Y'= {g': g 6 Y}. Then 
Y' C RUe(G): this is easily checked as in Proposition 1. (See also [12].) 
As in [20, Proposition 1], there exists an LIM on Y', and a result of de la 
Sarpe (cf [19, p. 78]) gives that R is injective. Hence A is nuclear and so 
amenable. So (b) implies (a). [] 

We will show in Theorem 2 below that strong amenability for A is 
equivalent to the existence of a RIM on B(A). For convenience, we write 
•-dS for the weak* closure of the convex hull of a subset $ of a Banach space 
dual X*, and for any Banach space X, will regard X C X**. 

Recall that ([15]) the algebra A is called strongly amenable if, when- 
ever X is a unital Banach A-module and D: A -• X* is a derivation, 
then there exists c•0 in •-d{u*D(u): u 6 H} such that D(a) = 
for all a 6 A. Haagerup ([11, Lemma 3.4 seq]) remarks that the following 
characterization of strong amenability holds. 

Proposition 4. The C*-a/gebra A is strongly amenable if and only ff there 
exists a virtual diagonal M in •-d{u* © u: u • H}. 

Theorem 2. The C*-algebra A is strongly amenable if and only if there 
exists a RIM on B(A). 

Proof: Suppose that m is a RIM on B(A). From (b) of Proposition 3, 
A*(m) is a virtual diagonal for A. For u • G, let • • eo(G)* be given 
by: •(qb) = qb(u). It is easily checked that A*(•) = u* © u. Since m is in 
2-6{fi: u • G}, it follows that A*(m) is in 2-6{u* © u:u • G} in (ACA)*. 
By Proposition 4, A is strongly amenable. 

Conversely, suppose that A is strongly amenable, and let M be as in 
Proposition 4. Then there exists a net {f,} in P(G) such that in the weak* 
topology 
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In particular, if V • Bil(A), then 

(18) 

(19) 

© 

Define m(A(V)) = M(V). Then m is wen-defined and is a mean on B(A). 
Let v 6 G. By (9) and (11), M(v.V) = M(V). Further, by (a) of Proposi- 
tion 3, A(v.V) = vA(V). 

It follows that m is a RIM. [] 

We conclude by discussing how some characterizations of amenable 
and strongly menable C*-algebras can be interpreted as fixed-point or 
extension theorems of classical amenabihty type. In particular, using mod- 
ules with a certain completely bounded property, we win prove a fixed-point 
theorem for amenable C*-algebras which fills a gap in the hterature. 

We begin with strongly menable C*-algebras for which the literature 
is more complete. In [2, 3], Bunce gives six characterizations of strongly 
amenable C*-algebras. An account of the results of Bunce is given in [25, 
Chapter 2]. Three of these can be interpreted as fixed-point theorems for 
the unitary group H analogous to the classic fixed-point theorem of Day. 
A fourth can be interpreted as a stronger version of a result in [17] which 
is valid for amenable Banach algebras. (See [6] for an elegant proof.) The 
remaining two give invariant extension characterizations. An of these char- 
acterizations can be readily proved using Theorem 2 and the approach of 
the fixed-point theorems for amenable groups ([19, (2.16) if.]). We are 
particularly interested in the following fixed-point theorem of Bunce. 

Theorem 3. The C*-algebra A is strongly amenable if and only iœ when- 
ever X is a unital Banach A-module and S is weak*-closed convex subset 

oœ X* such that v*Sv = S for ali v • H, then there exists g • S such that 
v* gv = g œor a11 v • H. 

Bunce gives two characterizations of amenable C*-algebras. As in the 
strongly amenable case, one of these is of the Khelemskii-type and the other 
is an invariant extension result. Both have Banach algebra versions, the 
extension version appearing in [18]. We now discuss a fixed-point theorem 
for amenable C*-algebras corresponding to Theorem 3. 

Let E be a locally convex space which is a unital A-module. The 
module E is called weakly completely bounded if, for every F 6 E* and 
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every x • E, the bilineax map Fx, where 

(20) Fx(a, b) = F(a/b), 
is a completely bounded bilinear form on A. 

If X is a completely bounded normed A-module in the sense of ([$]), 
then X is weakly completely bounded. 

We can make the Banach space A•A into a unital Banach A-module 
with the actions o: 

(21) ao(b©c)-b©ac (b©c) oa-ba©c. 
These actions are discussed in [2, 3]. 

Proposition 5. Let E = Bil•.•.(A) •vith the relative weak*-topology v•bich 
it inherits as a subspace of (A•A)*. Then E is a •eakly completely bounded 
A-submodule of (A•A)* under the duM actions o for (21). 
Proof: The fact that a o V o a • • E for a,a • • A and V • E follows by 
expressing V in the form of (3) •d checking that 

(22) a o V o a•(b• c): b(aTa•)•.• 
which is also of the form of (3). So E is an A-module. Now the du• of E 
is just (A•A)/E •. If F is the restriction of (b • c) to E, then using (22), 
(23) Fv(a • a •) : aTa•(•).b * • 
which is •so of the form of (3). Now let F be a gener• element of A•A. 
We c• write 

r = •bi •ci (• ]bi ]ci I < •)' 
I 

Let u = •aj • aj 6 A • A. Then us•g (23), 

IFv(u)l = I • 
i,j 

i j 

_ Ila•b• •11 )• 

t• I 1 • 1 
• I TII •1 • a• a• •11c•11 II • a•a•11• b;• I' 
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It follows that 

Hence V is bounded for the Haagerup norm (4) and so is completely bounded. 

Theorem 4. The C*-algebra A is amenable if and only if H bas the l•xed- 
point property: whenever X is a weakly completely bounded A-module and 
5; is a non-empty, compact, convex subset oœ X such that v*$v = 5; œor all 
v ß H, then there exists h ß $ such that v*hv = h œor all v ß H. 

Proof: Suppose that A is amenable. Let X be a weakly completely bounded 
A-module and $ be a non-empty compact, convex, invariant subset of X. 
Let a ß X* and g ß S. Then in the notation of (20), a 9 ß Bil22(A). By 
•heo•em 1, the•e e•t• • gI• • o• n•(•). Since •(•) • n•(•), we 
can define h :X* • C by: 

h(a) = f•t A(a9)dm = f•t a(u* gu)dm(u). 
Clearly, h is linear, and by approximating m by convex combinations of 
point masses, we can, using the invariance of $ and regarding the elements 
of S as functionals on X*, find a net {g,} in S such that g, • h pointwise 
on X*. Since S is weakly compact, it follows that h ß S. Now for v ß H, 

v•(•)(.) = •(•)(•v)= (v•v*)(.*g.) 

so that 

•(v•v*) = m(v/•(•)) = m(•(•)) = •(•). 
Hence v*hv = h for all v ß H. 

Conversely suppose that A has the fixed-point property of the theo- 
rem. The amenability of A will follow from Theorem 1 once we have shown 
that B22(A) has a RIM. For this purpose, we will use [19, Theorem (2.13)]. 
The latter asserts the existence of a RIM provided we can show that B22 (A) 
is right introverted (defined below) and that for each •b ß B22(A), there ex- 
ists a constafit function in the pointwise closure of the set 

C• = co{Ov'v ß H}. 
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We will establish these two facts in turn. 

Let m be a mean on H. Let V ß Bi122(A). We wish to define an 
element V ß m ß Bil22(A) such that for v ß H, we have V ß 5v = V.v (as in 
(10)). Indeed, for a,b ß A, we have bVa ß Bitg2(R), and can thus define 

(24) V ß re(a, b) = J• V(au*, ub)dm(u). 
It is obvious that V,m ß Bil(A) and that V,6v = V.v. In fact, by 
approximating m weak* by convex combinations of elements 5, we see that 
if V satisfies (3), then V,m satisfies (3) with T replaced by some ultraweak 
cluster point of the set co{v*Tv: v ß H} in B(•/). So V ß m ß Bil•2(R ). 

A left invariant subspace Y of too(H) is caned right introverted ([19, 
(2.6)]) if for each F ß œoo(H) and •b ß Y, we have •F ß Y, where c•F(v) = 
F(vc•). We claim that Y = B22(A) is right introverted. Indeed, if m and V 
are as above, then 

A(V)m(v) = m(vA(V)) = j• vA(V)(u)dm(u) 
= j• V(v* u*, uv)dm(u) = V ß re(v*, v) = A(V ß m)(v). 

Since œoo(H)* is spanned by means, it follows that B22(A) is right intro- 
verted. 

We now turn to the second fact to be established. By Proposition 
5, Bi122(A) is a weakly completely bounded A-module with the weak*- 
topology and the action dual to that in (21). Note that as in (11), V.v - 
v* o V o v. Let V ß Bil22(A). Let S = •5{v* o V o v: v ß H} in (ACA)*. 
As in the preceding paragraph, S is a weak*-compact convex subset of 
Bil22(A). Of course, v* o S o v = S. By hypothesis, there exists W ß S 
such that W.v = W for all v ß H. Further there exists a net {g,} in P(H) 
such that V.g, • W. Then 

A(V)g,(u) = V.g,(u* ©u)--• W(u*,u) 

so that A(V)g,• • iX(W) pointwise on H. Since 

iX(W)(u) = W(u*,u)= W.u(1, 1)= W(1, 1) 
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it follows that A(W) is a constant function. 
This completes the proof. [] 
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