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Abstract 

We have derived stability results for explicit high-order 
finite difference approximations of systems of hyperbolic 
initial-boundary value problems (IBVP). The schemes are 
a generalization of a fourth order scheme by Gustafsson, 
Kreiss and Oliger [5] to general order of accuracy 2 r. The 
stability results are obtained using the theory of Gustafs- 
son. Kreiss and SundstrSm (G-K-S) for the semi-discrete 
IBVP. These results are then generalized to the fully dis- 
crete case using a theory of Kreiss and •Vu [7]. 
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I Introduction 

In this paper we develop explicit high-order difference 
methods for hyperbolic systems and use them in prac- 
tical computation of the two-dimensional wave equation. 
For a hyperbolic system to preserve the spatial accuracy, 
a pth-order inner scheme must be closed with at least a 
(p- 1)th-order boundary sche•ne, see Gustafsson [3] and 
[4]. 

When investigating stability of the numerical approxi- 
mation of the IBVP, we rely on the stability theory analy- 
sis based on normal mode analysis, developed for the fully 
discrete case by Gustafsson, Kreiss and SundstrSm (G-K- 
S) [6], and for the semi-discrete case by Strikwerda [10] and 
Gustafsson, Kreiss and Oliger [5]. The G-K-S theory gives 
conditions that the inner and boundary schemes must sat- 
isf•v to ensure stability. The following theorem states when 
hyperbolic systems are G-K-S stable. 
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Theorem 1.1 Necessary and sufficient conditions for sta- 
bility (fully discrete [6] or semi-discrete [5],[10]) of the 
finite-domain IBVP is that, the inner scheme must be 
Cauchy stable on (-c•, c•), and that the Kreiss condi- 
tion is fulfilled, i.e. there are no eigensolutions for the two 
quarter-plane problems. 

Furthermore, in [5] it is shown that if the conditions in 
theorem 1.1 are fulfilled, the normal mode analysis leads 
to strong stability. 

Here, we will use the method of lines approach, the hy- 
perbolic systems are discretized in space but the time is left 
continuous. The semi-discrete system is then analyzed and 
stability results derived. The stability of the fully discrete 
problem follows from a result of Kreiss and •Vu [7]. They 
have shown that under weak conditions, if specific Runge- 
Kutta or multi-step schemes are used for ti•ne-integration, 
the stability of the fully discrete problem follows from the 
stability of the se•ni-discrete problem. 

Explicit difference operators for PDEs have been con- 
sidered, for example in [1], [2], [5] and [9]. In [5] strong 
stability for hyperbolic systems in one dimension is shown 
for the fourth order case. In this paper we generalize the 
result to general order of accuracy 2 r. The organization 
of the paper is as follows. Section 2 presents the stability 
analysis on the scalar model problem ut = au•:. In sec- 
tion 3 the result is generalized to systems, and in section 
4 nmnerical results on the two-dimensional wave equation 
are presented. 

2 Scalar model equation for IBVP 

Consider the problem 

(1) a(x,t) a t) -- •, a•0, 0<x<c•, t>0, Ot a Ox - - 

ICOSAHOM'95: Proceedings of the Third International Con- (2) 
ference on Spectral and High Order Methods. ¸1996 Houston 

Journal of Mathematics, University of Houston. (3) 

u(x,O) ---- f(x), 

u(0, t) = g(t), if a < 0. 

4O9 
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We xvant to solve the above problem by difference ap- 
proximation. Therefore, we introduce the mesh width 

and divide the x-axis into intervals of length h. For 
= -r + 1,-r + 2,...,0, 1,... we use the notation 

vj(t) = v(xj,t), xj = j h. 

We approximate (1) for j - 1,2,... by a centered finite 
difference scheme of order 2r 

(4) 

where 

ova(t) = aQvj(t), ot 

v:(O) = f(x:), 

is difference operator and the coefficients are given by 

(-1)t:-i (r!) 2 
&• = v(r+v)!(r-v)!' /2 = 1,..., 
C•-u -- --Ctu. /2 -- 0,..., 

Because the operator is 2r + 1 points wide we need extra 
boundary conditions at points x-v, /2 = 0, 1,..., r - 1. If 
a > 0. we have outflow at x -- 0, and use extrapolation of 
order q 

(7) (hz•+)q•,_•(t) = o. /2 = o, 1,...,•- 1. 

If • < 0. x = 0 is an inflow boundary, and by differenti- 
ating the boundary condition u(0, t) = #(t) and using the 
differential equation we obtain 

(s) 02•u(O,t) ct 2• Or2• -- g(2V)(t), /2 = 0, 1 ..... 
We need 

Lemma 2.1 We have the following expansion for smooth 
functions u(x) 

(9) (D+D_)•u(O) = u(2•)(0) + • cyh2Ju(2•+25)(0), 

where h D+ = E-I and h D_ = I-E -x. The coefficients 
are defined as 

(2(•,+j))! = k (-1)k(/2- k)2(v+J) 
j = 0,1,..., /2 = 0,1,.... 

Proof 

This shows that (D+D_) • has an expansion of the form 
(9). To compute the coefficients cy we note that 

2/• 

k:O 

where the binomial theorem have been used. Thus, 

(D+D_)%(O) = l • (2•)(--1)ku(xv_k). h2v k=O 

Expanding u(x•_k) in Taylor series implies 

= l! (-1)•(/2 - k)l' 
/=o k=0 

The coefficient cy is then obtained for l = 2(/2 +j) and the 
proof if complete. [] 

As boundary conditions for the difference approximation 
in the inflow case we approximate (8) for/2 = 0,.... r - 1 
by 

r--u--1 (lO) •(•+•_)•vo(t) = 
j=0 

For u = 0 the coefficients are c? = 6j.o, and (10) is valid 
also for the analytic boundary condition. 

2.1 Necessary and sufficient conditions for 
stability 

A necessary condition for stability of our semi-discrete ap- 
proximation, defined in (4), (7) and (10), is that the as- 
sociated eigenvalue problem has no eigenvalues or general- 
ized eigenvalues. That is, our semi-discrete problem with 
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g = 0, f = 0, has no solutions of the form 

(11) = e "t 

where s are the eigenvalues. Substitution into (4), (7) and 
(10) yields the eigenvalue problem 

(12) •:j = a • a•j+/2, j = 1,2,..., g = s h, 

(13) D•_4_/2 = 0, t, = 0,...,r-I, if a>0, 

(14) (D+D_)/2•;o = 0, t, = 0,...,r- 1, ifa < 0, 

(15) 

The characteristic equation to the difference equation (12) 
is 

(16) 
/2ml 

Scalar product and norm are defined by 

(17) (v, 
j=l 

First we note that in [5] it is shown that for su•ciently 
large ',5•. Re • > 0, there are no eigenvalues. Furthermore, 
when Re • • •. the n with In[ < 1 converges to zero. 
•X• need 

Lemma 2.2 1) The characteristic equation (16) has ex- 
actly r roots 

[•j[ < 1 forReg>O, j = 1,...,r, 

and there are no roots with ]/'•j] = 1 for Re g > O. 
2.) For • = 0 the only roots to the characteristic equation 
(16) with absolute value one are n = 4-1. Furthermore they 
are simple. 
$) In a neighborhood of • = 0 the roots with [njl < 1 for 
Re • > O, and absolute value one for g = O, are of the form 

• ---- -1+ s +O(g2), ira>O, 
26 • ( r!)2 

'• 0(,•2), /f a < O, <• : 1+•+ 

Proof 

1) The statement follows from a result in [•]. 
2) Also in !.5] it is shown that the operator can be factorized 
as 

Q = Do 
/2=0 

where the coefficients are defined recursively by 

4u'-+2/•/2-1, 

30 = 1. 

Since (h2D+D_)/2n j nJ (•_•)2. = • , the characteristic equa- 
tion can be written as 

r-1 (•;_ 1)2/2 
/2=0 

Let • = 0, n = e i•, -•r _• • _• •r, and note that 

ei • = (--1)/222/2 (sin •'2/2 
then the condition to have a root on the unit circle is 

aisin•y•/222(sin•) 2 = O. 
/2-----0 

The second factor is positive for all • except • = 0 for 
which it is zero. Therefore the condition can be fulfilled 

only if• = 0 or • = 4-•r, i.e, if n = 4-1. To show that 
these roots are simple, let p(n) = Z;=I o•/2(/•/2 - N-/2). A 
necessary condition for n = 4-1 to be a multiple root is 
dp(4-1)/dn = 0, but 

dp(n) 

•p(-•) 
d• 

= + 
/2=1 

= 2 • c•/2• = 1. 
/2=1 

= -2 • 
/2=1 

- 2 • (r!)2 -- (•+/2)!(•_/2)! • 0, 

shows that n - 4-1 are simple roots. 
3) For g = 0, the solutions to the characteristic equation 
(16) with absolute value one are 

n (•'2) = 4-1. 

Since, 
(1 = 1 + 

and 

(-1 +e) • = (-1)•(1-ek) + O(62), 
the characteristic equation (16) gives for small • and nO) = 
1+e 

g = a•'•ak((l+e) k--(l+e) -k) = 2ae,•akk+O(e2). 
k=l k----1 
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Consistency implies that •k=• ak k = 1/2, therefore 

n (•) = 1+-+O(õ2). 

With a(2) = -1 + e we have (19) 

• = 2a• • •(-1)•+•k+o½ 2 ) 
k=l 

= 2ae (•+k)!(r-k)! + ) with 

r (r!)•- is positiveß Thus, where •-]•=• 

•(2) = -1 + + O(•2). 
2a (•+•)!(•_•)! 

k=l 

By selecting the roots satisfying Inl < 1 for Re J > 0, the 
third statement follows and the lemma is complete. [] 

By Lemma 1.2, there are r roots n•, •, = 1,...,r, with 
I•! < 1 for Re • > 0. The general solution of (12) with 
l[•ll• < •: can be written in the form 

(20) 
g3 : c•f3[ni] 4-o2fj[n2.a•]-i-... +crfj[n•,...,n•], where 

(lS) 
• •= •.. i • k, j = 1,2,.... 

where 

fj[•t. •] = f•[• ...... •-•]-L[•,-• ..... •u] l > k. .... t• l --t• k , 

If for instance • = •2 = • is a double root, then fj [•2, •] 
becomesj•'-• If• =•2 =•3:•is a triple root then 
fj[•3.•2. s•] will become j(j- 1)• j-2. If • -- •2 ..... 
•z = a is a root with multiplicity 1, then fj[•z,...,•] 
becomes •! •-(z-•) and the solution (18) to the (J-U-•))• ' 

eigenvalue problem in this case can then be written as 

• = (h +&j +...+hf-•)n • + • •f•[n•,...,n•+•]. 
u=l+l 

Therefore by using the form (18) we can treat simple roots 
and multiple roots simultaneouslyß 

To be able to express the boundary conditions in terms 
of • we need the following relations for the difference op- 
erators D+ and D_ and 

(•D+)•,• : (•D+)•-•(• •+• - •) 

= (•D+)•-2•(•- 1) 2 

..... •(•- 1)q, 

ß : h2uF) u F) u•-j : h2v/92v•cJ -v (h2D+D_)• 

By (18) the outflow boundary conditions becomes 

(hD+)q•-v • ck(hD+)qf_•[*•,...,*q] 

• Ckgu[•k,...,•l] = O, 
k=l 

v = 0,1,...,r-I, 

g•[•] = 

ß, t½l --t• k 

The inflow boundary conditions becomes 

, l>k. 

(h2D+D_)•o 

(n-l) 2• 

• c•(h2D+D-)•fj[•k, .... nz] 
• Ckgu[•k, ... ,N'I] = O, 

k----1 

v = 0,1,...,r-I, 

ß • tqI--t• k ' 

The systems of boundary conditions (19) and (20) we write 
as 

c2 

D . =0, 

Cr 

where D is the (r x r)-matrix 

(•_•)• 
,½• , a < 0, 

•[•] = 
(•-•)• 

•-• , a>0, 

ß , tq l --tq k 

_-- nJ-v(n -- 1) 2v. The be able to calculate the determinant of D we use 
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Lemma 2.3 D can be factorized as 

D D - 
with 

B•, = 0 t}• ' 

r>l, 

1 -1 

1 

h-. 0 ) C• = o •, ' 

( go[•x] go[•2] ... go[•,-] ß o 

g•-•[•] g•-z[•=] ... g•-z[•] 

Here B•C• and 1• are of size (r x r), P• is of size 
((v + 1) x (• + 1)), • is of size (• x •), and I•denotes 
the identity matrix of size (• x •). 

Proof 

D 

go [•x] ß 

go[•x] ... go[•-2, ß ß ß, •1 go[•,--x, ß ß ß, •2] ß 

g•-•[•] ... g•-x[•-2,...,•x] g,--,[•,--z ..... •1 

By repeating this procedure gives the factorization. [] 
The factorization of D makes it easy to calculate the de- 
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terrainant. First we note that 

detBj = 1, 

I-Ik=l ( r-3+k -- n•)-l, detCj = J n ß 
Therefore, 

j - 1,...,r-I, 

j = 1,...,r-1. 

r--1 r--1 j 

II dctC• = H H (•r-•+•-•) -• 
3----1 3----1 k----1 

= (/{r --/{1)-- 1 (/{r_ 1 --/{1) --1 

(Nr--N2)--I... (N3--N2)--I... (Nr--Nr_l) --1 

: II (•_•)-1 

= (_1)«(•-•> • H (•,_•j)-i 
r_>j>i>_l 

= (-1) «{•-•)• H (•i-•]) -1 
r_>j >i_> l 

Now it only remains to calculate the determinant of/•. 
In the outflow case we have with •/j = (K s - 1) q 

ß , ß 

where the •) is a Vandermonde matrix. Let 

XO :El ß ß ß Xn 

then the determinant of V is •n•j>i•o(Xj -xi). With 
• = r - I and xi = 1/ni+•,i = 0,...,r - 1 we have 

_ • •t• - H ( • •)= H (• r-l•j>i•0 nj.• n•+x r•j>i•l 

and 

Finally, 

detD = H 
r_>j >i_> l /•i -- /•j kl-ll(/•k __ 1)q. /qi/qj 

the outflow problemß 
In the inflow case we have 

Since this also is a Vandermonde matrix we immediately 
(n•_r --1) 2 get with xi = •+1 

: ( (• _•)2 (• _•)•. ) detD = H . • • 
r_>j>i_> l 

= H (•-•)(•-•) r > 1. 

Thus, 

H (1- I ), c>1 detD = r_•j>i_• l • 
1, r: 1, 

which only can be zero if nit•j = 1, i • j, 1 _< i, j _< r, r > 
1. By Lemma 1.2 this is not possible for Re • > 0, and 
there are no eigenvalue to the inflow problem. 

We have proved 

Lemma 2.4 There are no eigenvalues • with Re • > 0 to 
the eigenvalue problem (12) with outflow (13) or inflow 
(14) boundary conditions. 

Finally, we have to show that there are no generalized 
eigenvalues when Re • goes to zero. We have 

Lemma 2.5 There is constant 5 > 0 such that, on any 
compact set I•l <- c, Re •-> O, the roots nl, ..., n• of the 
characteristic equation (16) satisfy the inequalities 

I•j - II >_ 5, j = 1,... ,r /fa > 0, 

ll----• I >a i•j, I <i,j <rifa<O. M•t• 3 .... 
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Proof 

The roots are continuous functions of •. Therefore, the 
inequalities can only be violated if for some •, Re • _> 0 

nj = 1 whena>0or ninj =l, i•jwhena<0. 
The first statement of Lemma 1.2 tells us that this can- 

not happen for Re • > O. 
Let a > 0 and nj = l, then from (16) • = 0. However, 

the third statement of Lemma 1.2 tells us that nj = -1 
and we have a contradiction. 

Let a < 0 and •inj = 1, i • j, then (16) implies 

,• _ •(• - • ) = •(• - • ) 

Thus. • = 0 and we have a contradiction since n•nj • 1 
according to statement two and three of Lemma 1.2. This 
proves the lemma. 

2.2 The main results 

We now have the main result 

Theorem 2.1 The approximation defined in (•), (7) and 
(10) is strongly stable and the error of the solution is of 
order h 2•' if q _> 2r. 

Proof 

From I5] it follows that the approximation is strongly sta- 
ble since it has no eigenvalues or generalized eigenvalues 
and the operator is semi-bounded for the Cauchy problem. 
Therefore it remains only to validate that the error of the 
solution is h 2r. Let u be a smooth function and denote by 
ej(t) = u(xj.t) - vj(t) the error, then we have 

•%(t) = aQej(t) + h2rFj(t), j = 1,2, dt ' ß ' • 

ej(O) = 0, j = 1,2,... 

For the boundary conditions we have, if a < 0 

h •-" (a •"(D+D_)"•(0, t)- o •" 

0 0, and therefore the error of We note that for • -- 0, cr - 
the analytic boundary condition e0 = 0. 
For a > 0, 

(•D+)•e_,(t) = (•D+)%(•_,,t) - (•D+)•_,(t) 

= (•D+)•(•_,t) 

- h qø•(•-•'•) o(h q+•) o(hq), -- Oxq + = 

v = 0,1,...,r-1. 

Therefore, from the strong stability and since the forcing 
is of order O(h 2• + hq), we have the following estimate for 
the error 

II¾t)11• = co•st (11A2•F(•)IIZ+IO(h2•)12)d• = O(h4•), 

if q • 2r. • 

3 Systems 

Consider the system 

(21) ut = Au•. O<x<•c. t>O, 
-- _ 

with initial conditions 

(22) u(•, 0) = f(x). 

Approximate by a finite difference approximation of order 
2r 

dv,• (t) at = Qvj(t), j = 1,2,..., 
(23) 

w(O) = fj, j = 1,2,..., 
where 

Q=A• . 
Since A can be diagonalized, we can assume A having di- 
agonal form with 

( Az ) A' A z' A = A• • , > 0, < 0. 

The boundary conditions can be written as 

(24) •"(0, t) = s•(0, t) + g(t). 

Differentiation of the boundary conditions (24) and the 
differential equation (21) give us 

o•"(o, t) o•(0,t) (A• 

(2s) 
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As boundary conditions for the in-going characteristic vari- 
able we approximate (25) for/2 = r - 1,..., 0 by 

(26) 

where 

r--•,--1 

Q• = (z•+z•_) • - • cy •v Q•+•. 
j=l 

The reason to define Q• this way is that Q•u(O) will be 
an approximation of u(2•)(0) of order h 2r-2•. This is ex- 
actly what we need for the boundary conditions to be of 
order h 2r. For the outgoing characteristic variable we use 
extrapolation conditions 

(27) D•_,,L•(t) = 0, /2 = 0,1,..., r - 1. 
We have the following result 

Theorem 3.1 The approximation defined by (25), (26) 
and (27) is strongly stable and the error of the solution is 
qf order 2r if q _> 2r. 

Proof 

The t 'I approximation is decoupled from v TM and is already 
discussed and strongly stable. \Ve can now think of v •r as 
a given function and write the boundary conditions for v H 
as 

/2 ---- 0,...,r--1. 

Now we can think of the approximations of v H as consist- 
ing of scalar equations which we already have discussed. 
By theorem 1.1 they are strongly stable. 

Let u be a smooth solution. Denote by, ej(t) = 
u(z b. t) - v• (t), the error, and we obtain the system 

dcd (t) at = Qej(t) + h2*Fj, j = 1,2,..., 

ej(0) = 0, j = 1,2,.... 

For the inflow part of the boundary conditions we have 

= h2• (Q•un(O,t)-S•Q•uz(O,t)-(AZZ)-2•g(2•)(t)) 

and for the outflow part 

(•D+)•eL•(t) = (•D+)•d(•_•,t)- (•D+)%,œ•(t) 

= (•D+)•(•_•,t) 

__ hq Oqu•(x_• ,t) -- Oxq q- O(hq+l) 

: O(hq), /2 = O, 1,...,r - 1. 

This shows that the forcing is of order O(h 2") + O(h q) and 
the desired estimate follows from the strong stability of the 
approximation. [] 

4 Numerical results 

Consider the two-dimensional wave equations 

Ut -- AlUz• +A2ux2, 
(28) 
where u = (p u v) T and 

Ax = -1 0 0 
0 0 0 

O_<xx_<l, O<xo<l, t>_O. 

0 0 -1) A2 - 0 0 0 . 
-1 0 0 

The components of u are pressure and the velocity in the 
x• and x2 direction. With the boundary conditions 

p(x•,O,t) = p(xt,l,t) = 
(29) p(O, x2,t) = p(1,x2,t) = 0, t _> 0, 

and initial conditions 

p(x•,x2,0) = sin(•x•)sin(•2x2), 

(30) u(xx, x2,0) = 0, 

v(x•,•:2,0) = 0, 

where cv•: ran' and •2 - nn', ra, n - 1, 2,..., the exact 
solution is 

p(x•,x2, t) = sin(•lX•)sin(•2x2) cos(v•t), 

u(x•,x2,t) = -• cos(•x•) sin(•2x2) sin(v•t), 
v(x• x2 t) = -?-•- sin(•x•) c0s(•2x2) sin(v•t), 

(31) 
where A = •2 + co• . Let h• and h2 be mesh widths in the 
x•- and x2-directions, and divide the axis into intervals of 
length h• and h2 respectively. For i = -r + 1,..., N• + 
r-landj = -r+l,...,N• 2+r-lweusethenotation 

u/h,j(t) -- uh(xli,X2j,t), x•i -- ihl, x2j = j h2, 
= O(h2"), /2 = O,...,r-1, h•Nx• = h2,¾z2 = 1. 
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We approximate (28) by a centered difference approxima- 
tion of order 2 r 

h 

d u i.J 
dt = (A1Q•,i + A')Qz2) u'•' i - 1. Nx• - 1, - •../, ß . . , 

j = 1 .... ,.\•21, 
(32) 
where u. •. = (p/' u/' ,h r ,.• • )i.j and 

Qx. = h17 • o, EY 
= = 

3,= 1,2, 

To get extra boundary conditions for the numerical scheme 
we differentiate the boundary conditions (29) with respect 
to tilne and use the differential equation (28) to obtain 

{ 33) 02•p('j"r2't) /'J2"p(x 1 "i't) o.,.•,' o.d" = O. j = O. 1. 

We approximate (33) for v = 0 ..... r- 1 with 

)2,,pt.,. = 0. j : 0._•,. i = 1 ..... _\-• -1. I D_.,-, D_ •'2 '-.• - - 

•34) 
where D_.,._ aud D_ ,._ are the usual forward and backward 
differences in the the -,-direction. At a'l = 0.1 we need 
boundary conditions for u. • and at x2 = 0.1 for v •. These 
couditions are obtained by extrapolation of the locally out- 
going characteristic variables. Thus. for •, = 0 ..... r- 1 
we have 

(h•D..,.•)2,.(ph _ uh)_.j = 

(hlD_,.t)2,.(ph + uh).x_.q +v.d = 0. j = 1 .... ,-Vz2 - 
(35) 

(h2D ..... )2,-(ph __ uh)i._. __ 
- 

(h2D_.•. 2 )2r(ph + Vh)i.X,.2+•, = 0. i = 1 .... , A%• -- 1. 

We now use the numerical boundary conditions (34) and 
(35) to modi•' the operator close to the boundary. The 
reason why we solve the differential equation only at in- 
terior points. i = 1 ..... .\• - 1, j = 1,...._'\•., - 1, is 
that it simplifies the implementation, and since p = 0 at 
the boundary. we will have u = 0 at x2 = 0, 1 and v = 0 
at x• = 0.1. Furthermore. u•. ,.j at i = 0, '¾x• and u/h.j at 
j = 0. _\:•_.are given bv the extrapolation conditions (35) 
with v = 0. 

Figure 1 shows the pressure component of the nmnerical 
solution obtained using the sixth-order scheme, (32), (34) 
and (35) with r= 3. 

i 

0.5 -. 

o 41! 
• '½ ' *' , ½' "'-:.'1t' -1 

1 '. '•..' ::;.:. .. 

o o 

Figure 1' Pressure component of numerical solution of the 
two-dimensional wave equation at t = 0.5. ,.'• = 

4.1 Convergence rate of high-order meth- 
ods 

To analyze the convergence rate of the numerical so- 
lution we make a grid refinement study on the two- 
dimensional wave equation. The Logm of the L2 error. 
Logm(llu - u•ll2), is computed at a fixed time t = T. and 
the convergence rate between two grid densities are plot- 
ted. For the second- and fourth-order scheme a fourth- 

order Runge-Kutta scheme was used for time-integration. 
and for the sixth-order scheme a sixth-order Runge-Kutta. 
The time step was chosen such that the error of the time- 
discretization was smaller than the error of the space- 
discretization. The convergence rate was computed as 

Ilu - u h' 112 hi 
q -- logm(llu_ u•=l12)/løgm(•) ß 

The results are shown in table 4.1. 

The results in table 4.1 agrees well with the theory of 
Gustafsson [3] and [4] which predicts that boundary con- 
ditions of order p - 1 must be imposed to retain pth-order 
global accuracy. Since all boundary conditions considered 
here are of order 2r- 1 we get global accuracy of order 2r. 

4.2 Efficiency of high-order methods 

The efficiency of high-order methods compared with sec- 
ond order methods has been studied in [8] and [11]. The 
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Second-order Fourth-order Sixth-order 

Grid Log(L2) q Log(L2) q Log(L2) q 

21 -1.176 -2.708 -4.262 

41 -1.753 1.92 -3.956 4.14 -6.622 7.83 

81 -2.344 1.96 -5.177 4.06 -8.149 5.07 

Table 1: Grid convergence of schemes on two-dimensional 
wave equation with ";• = ";2 = 2•r, T = 1. 

conclusion is that the high-order methods are more efficient 
than low-order ones for hyperbolic problems with smooth 
solutions, except when very low accuracy in the solution is 
needed. 

As a test of the efficiency of the fourth- and sixth-order 
methods compared xvith the second-order method, we com- 
pute the numerical solution and compare it with the ex- 
act solution of the two-dimensional wave equation. This 
is done at a fixed time, t = 0.5, on successively refined 
grids. with :V• = 3,•2 = N, and for different frequencies 
-;• = -;2 = -;. On each grid we compute the relative error, 
Ilu- uh!12/llul[2,and measure the consumed CPU time 
Tcp•,. For the second-order and the fourth-order schemes 
a fourth-order Runge-Kutta scheme with four stages was 
used to integrate in time. For the sixth-order scheme a 
sixth-order Runge-Kutta with seven stages was used. For 
all Runge-Kutta schemes the time step was chosen such 
that the error in the time-discretization was of the same 

order as the error of the space-discretization and as close 
to the stability limit as possible. All computations was 
done on a SUN Spark-Station 10 equipped with a 40 MHz 
processor and without external cache. The results are pre- 
sented below. 

Table 4.2-4.2 shows clearly the high efficiency of the 
fourth- and sixth-order methods compared with the 
second-order one, this is true in particular for high fre- 
quencies and high accuracy requirements in the solution. 
If we want to compute the solution of the problem with 
"; = 4•r, with a relative error of 0.001, the second-order 
method would need approximately 0.9 CPU hours while 
the fourth-order method would need less than 29 seconds 

and the sixth-order one less than 15 seconds. For lower 

frequencies and lower accuracy requirements in the solu- 
tion the gain is not that big. In table 4.2 a relative error 
of 0.01 xvould require approximately 0.5 second CPU time 
for the second-order method, 0.1 second for the fourth- 
order method and less than 0.3 seconds for the sixth-order 

Second-order 

[[u--uh 1[• Tcpu 

Fourt h-order Sixt h-order 

IlU-U•][2 Tcpu tlu--uh ][2 Tcpu [lUll2 IlUll2 

9 5.88 

17 1.63 

33 4.10 

65 1.02 

129 2.56 

257 6.40 

513 1.60 

10 -2 0.03 3.46 

10 -2 0.14 2.43 

10 -3 0.90 1.50 

10 -3 6.7 8.95 

10 -4 52 5.36 

10 -s 415 3.26 

10 -5 3305 

10 -3 0.09 5.01. 10 -4 0.32 

10 -4 0.57 2.47- 10 -6 2.0 

10 -• 3.8 6.62. 10 -8 15 

10 -7 29 9.59. 10 -•ø 115 

10 -8 228 1.22. 10 -• 911 

10 -• 1822 1.52.10 -•3 7268 

Table 2: Relative error and consumed CPU time. 

Second-order Fourth-order Sixth-order 

[I u-uh [12 Tcpu I[ u-uh [[2 Tcpu [I u-ua 112 Zcpu 1111112 IlUl[2 1111112 

9 5.03 

17 1.15 

33 2.72 

65 6.74 

129 1.70 

257 4.29 

513 1.08 

10 -• 0.03 1.01 

10 -• 0.14 7.75 

10 -2 0.90 4.44 

10 -3 6.7 2.52 

10 -• 52 1.48 

10 -4 415 8.96 

10 -4 3312 

10 -• 0.10 2.59. 10 -2 0.33 

10 -3 0.57 4.50. 10 -4 2.0 

10 -4 3.8 7.38. 10 -6 15 

10 -s 29 8.66. 10 -s 115 

10 -• 228 9.95. 10 -m 913 

10 -8 1818 1.19.10 -• 7277 

Table 3: Relative error and consumed CPU time, "; = 2 :r 
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Second-order Fourt h-order 

Ilu--uhl12 Tcpu Ilu-uhl12 Tcpu 

Sixth-order 

u-u• 112 T•pu 
9 1.29 10 ø 

17 7.84 10 -1 

33 2.67 10 -1 

65 6.10 10 -2 

129 1.45 10 -2 

257 3.59 10 -3 

513 8.95 10 -4 

0.03 

0.14 

0.91 

6.8 

52 

416 

3314 

9.50 10 -1 

1.69 10 -1 

1.09 10 -2 

6.55 10 -4 

4.03 10 -5 

2.51 10 -6 

0.10 1.66.10 ø 0.33 

0.58 4.63- 10 -2 2.0 

3.9 4.40.10 -4 15 

29 2.73.10 -6 116 

229 5.05- 10 -s 913 

1817 8.86.10 -lø 7274 

Table 4: Relative error and consumed CPU time, w = 4 •r 

Second-order Fourth-order Sixth-order 

]lU -uh I]2 Tcpu II u-uh 112 Tcpu II u-uh 112 Tcpu 
9 1.00.10 ø 0.02 1.00- 10 ø 0.10 1.00.10 ø 0.32 

17 1.14-10 ø 0.13 1.41.10 ø 0.57 9.87-10 -1 2.0 

33 9.85. 10 -1 0.90 2.72- 10 -1 3.8 3.84- 10 -2 15 

65 5.22. 10 -1 6.7 1.97. 10 -2 29 3.76. 10 -4 115 

129 1.23. 10 -1 52 1.25 ß 10 -3 228 6.33. 10 -6 911 

257 2.90. 10 -2 415 7.84 - 10 -5 1822 1.09- 10 -7 7268 

513 7.15. 10 -3 3315 

Table 5: Relative error and consumed CPU time, a; - 8 •r 

one. Thus, it is only for a relative error of the order 0.1 and 
low frequencies that the second-order method can compete 
with the high-order ones. Tests with a three-stage second- 
order Runge-Kutta in combination with the second-order 
scheme in space was also made. However, the combination 
second-order in space and fourth-order in time turned out 
to be more efficient. 
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