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Abstract 

We introduce and analyze stable discrete spaces with quasi- 
optimal approximation properties (with respect to increas- 
ing polynomial degree). This will pertain to some general 
classes of problems: scalar and systems of elliptic as well 
as semi-elliptic (Stokes') problems. 
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1 Introduction 

High-order mixed methods for solving some classes of dif- 
fusion. elasticity and fluid-flow problems lead to some in- 
teresting questions on stability and approximability. It 
is. for some of these problems, possible to achieve high 
accuracy by using a finite element technique with high- 
order piecewise-polynomials on a subdivision of the do- 
main. These methods generally go under names such as p 
or h - p versions of the finite element method or Galerkin 
spectral element methods. 

This note will concentrate on the theory (and practice) 
of divergence stability. 

In view of the lack of stability (inf-sup constant going 
to zero as the polynomial degree tends to infinity, cf. [18]) 
for some "natural" choices of discrete spaces - and its ef- 
fects such as the extent to which the approximation of the 
velocity/pressure 'locks'- as pertaining to Stokes' (cf. [18] 
[14] [15] [16] [19] [4]) as well as scalar elliptic problems on 
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a bounded, polygonal, plane domain (cf. [9] [15] [17] [13]), 
we are interested in the question of whether or not it is 
possible to define stable discrete spaces. 

In õ2 we develop some basic constructions, and we then 
introduce stable discrete spaces with quasi-optimal approx- 
imation properties (with respect to increasing polynomial 
degree). This is done for scalar elliptic problems in õ3 
and, in õ4, it is done for semi-elliptic (Stokes') systems of 
equations. 

2 Basic notation and definitions 

Let f• be a bounded, simply connected domain with either 
smooth or piecewise curvilinear boundary F (with finitely 
many segments). 

Let Sobolev spaces and the norms specifying their 
topologies, (Hk(f•), II' II•) and (HS(F), I' Is), be defined 
as in [1] or [10]. We identify Hø(9) with L2(9) and the 
L2-inner product is denoted (.,-). (We will, when conve- 
nient and hopefully without confusion, at times use the 
latter to also denote an ordered pair.) Let 

(1) H(div, f•) d__ef ([Co•(f•)]2)closure under [l'l[I-/(div), 
where we take the closure with respect to the norm defined 
by 

ii•ll 2 def HCdiv) ---- Ilxl10 + IIV, xll0 
Then we select (but not yet explicitely) two subspaces: 

(2) X(•2) c_ H(div, f•), and 

(3) 

(which axe again to be Hilbert spaces). When it is clear 
from the context we will use X and Y to denote X(f•) and 
Y(•). 

We may then define the divergence operator, div, on X: 

(4) div:X3v•V.v•Y; div•B(X,Y), 
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through the classical definition (VLx + V2,y) and density 
of C*c(Q) in L2(Q). We associate a bilinear form to the 
divergence operator: 

Definition 2.1 The bilinear form 

b. X x V • (v, q) • b(v, q) • 2• 

is given by 

b(v,'q) = - fa I7. v q dx. 

Similar to (4), we have - for completeness - the operators 
curl and grad, classically defined as 

17 x 0 = (-0y, 0x) = (170) ñ with 170 = (0x, 0y), 

extendable to 13(H•,H(div)) and 13(H•,[L212), respec- 
tively. 

Using Galerkin mixed methods we will seek weak solu- 
tions of elliptic or semi-elliptic problems in two sequences 
of closed subspaces X•v C_ X and Y•v C_ Y. The index N 
may be used as an indication of the dimension of the sub- 
spaces which is most often a function of some discretization 
parameters (such as mesh size, h, or degree of polynomials, 
k, p, or r). 

\Ve assume that the variational formulation of the el- 

liptic or semi-elliptic problem involves a separate bilinear 
form a. 

Definition 2.2 Let there, in addition, be given a bilinear 
form 

a: x x x • (u, v) • a(u, •) • 

Then, we define the class of variational problems under 
consideration to be of the following saddle-point-type: 

(6) 

Find u•¾ • Xm and vrN • YN s.t. 

a(u•¾,v)+b(v, vrN) -- fl(v) VvGXN, 
b(uzv,q) = f2(q) Vq • 

where f• • X* and f2 G y. (the dual spaces of X and Y, 
respectively) are given. [] 

The fact that the problem (6) is well-posed remains to be 
verified in the particular cases and will rely on the general 
framework in [21 and [6]. (Note that we have not excluded 
the possibility of setting (XN, YN) ---- (X,Y).) Here we 
merely consider the case when the problem (6) is semi- 
simply set: 

Definition 2.3 The variational problem (6) is said to be 
semi-simply set if, in addition, a is bounded and coercive 
(over X) and b is bounded (over (X,Y)), i.e. E c, C > 0 
such that 

la(u, v)l <_ 011ullxllvllx 
(T) +a½,v) _> cllvll} vv•x, and 

Ib(v,q)l <_ CllvllxllqllvVv e X,q e Y. 

where either the + or the - is used uniformly over X. [] 

If the problem is semi-simply set, we may concentrate on 
the second inf-sup condition of Brezzi's in order to estab- 
lish well-posedness and stability. Towards that end, we 
also merely consider the case when the family of subspaces 
{(X•v, Y•v)}•v conform to the continuous problem in a cer- 
tain sense: 

Definition 2.4 The sequence of pairs of subspaces 
{(X.¾,Y•v)}•v is called Hodge-conforming in (X, Y) if 

1. X;½ C_ X and Y;½ C_ Y, as well as 

2. 17. X•v C_ Y•v. 

Let us define the affine manifolds (depending on f2): 

MN de___f {W • XN : b(w,q) = f2(q), Vq E Y•¾}, 
(8) M0 d•=f {wEX•v'b(w,q)=0,VqEY•v}, and 

•5[ de•___f {1/; • X'b(w, q) = f2(q), Vq G Y}. 
Then, we may reformulate part of our variational prob- 
lem (6) as: 

Find UN • 2V/N s.t. 

(9) a(u,¾, v) = f•(v) Vv 
which is useful in certain situations. 

Lemrna 2.1 (•t la Brenner &: Scott) Suppose the vari- 
ational problem (6) is semi-simply set and the sequence of 
pairs of subspa•es {(X•, •) }•½ is nodge-•onormin in (X, Y). Then the following error estimate holds 

II u-uz½llx<CJ inf II u-vllx+ inf II•r-qll¾}. -- [ v•MN q•YN 

Proof One merely, but carefully, checks that the argu- 
ments from Lemma 8.1.1 in [5] carry over to get 

cllu- uxllr 

and then one replaces a(u, w) and a(um, w) using (6) and 
(9) as well as employs that w • M0 to get the claim. [] 
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In situations where f2 is particularly simple (0!, 1, or ap- 
proximated a priori), we get the following lemma. 

Lemma 2.2 (h la Scott & Vogelius) Suppose that the 
variational problem (6) is semi-simply set, 3fN • YN 
so that f2 : Y • q •-• f•(q) - (fN,q) • lit, and that 
the sequence of pairs of subspaces {(XN, YN)}N is Hodge- 
conforming in (X, Y). Then, Ms C M and the following 
error estimate holds 

(10) Ilu- uNl}x C { inf llu- vllx} . v•Mx 

Proof by Ceg's lemma. 

In order to obtain quasi-optimal error estimates, it would 
be very convenient if we could establish: 

(11) inf ilu- vllx C N }o 
As is well-known from [22], this is in the Hodge-conforming 
case closely related to the concept of divergence-stability 
(in turn, intimately connected to the second inf-sup con- 
dition), which we generalize slightly for our benefit. 

Definition 2.5 A family of closed subspaces {WN}N C_ 
2 X is called divergence-stable with respect to (X, Y) if 

1. the spaces V. WN are closed in Y, and 

2. 3c > 0, independent of N, such that 

(i2) 
b(w, q) 

sup > cllqllY, Vq v. WN; 

cf. [22]. [] 

Lemma 2.3 Suppose (6) is semi-simply set and {XN}N 
•s divergence-stable with respect to (X, Y). Then (6) is 
well-posed on (X•, V. X•v) and (u•r, •r•v) is uniformly sta- 
ble in (X,Y). In addition, the following error estimate 
holds 

Proof k la Brezzi or Babu•ka. 

Ilu-vllx+?? II-qll} 

Proposition 2.1 (h la Scott &: Vogelius) Let the as- 
sumptions of Lemma 2.2 be fulfilled. Then the spaces MN 
and XN satisfy the estimate (11) for arbitrary u • M, with 
a constant C that is independent of u and N if, and only 
zf, {XN•N is divergence-stable with respect to (X,Y). 

Proof as in [22]. [] 

As we know from [22], this is equivalent to the existence 
of a sequence of uniformly good vib'es, i.e., right-inverses 
to the divergence operators: 

(13) vib. Y3q•v•X, V.v=q; vib•B(Y,X); 
VibN:YN3q•--•V•XN, div(vibNq) = q Vq • YN, 

with a uniform bound Ilvib,ll(/,x) _• c for c in- 
dependent of N. (We used, implicitly, the fact that 
{(X,v, YN)}s is Hodge-conforming in (X,Y) to see that 
vibN E B(YN, XN).) We are therefore interested in deriv- 
ing norm estimates for vibs• = (V.)-x[K, in the topology 
of B(Y, X). 

We will try to create analogues of the well-known 
Helmholtz decomposition in the plane. 

Theorem 2.1 (Helmholtz) 
Every function v of [L2(•)] 2 has the following orthogonal 
decomposition: 
(14) v = Vq + V x &, 

where q 6 H1/R is the only solution of 

(15) (•7q, •7/•) = (v, •7/•) V/• • H 1, 

and ½ • Ho • is the only solution of 

(16) (Vx½,Vxx)--(v-Vq, Vxx) 

A proof of the result in this form is given in [10] Thm. 3.2. 
Given X, let (I) be a vector space of stream- or (Airy) 

stress functions (read: pre-curls), i.e. V' x (I) C_ X, and ß be 
a vector space of potential functions (read: pre-gradients), 
i.e. V'• C_ X. Let there be given a sequence of pairs of 
parental spaces (I)N C_ (I) and •N C- •. 

Definition 2.6 The pair of spaces (•, •), the sequence of 
pairs of subspaces {((I)N, q•N)}N, along with the sequence 
of subspaces {XN}N is called Helmholtz-conforming in 
(X,Y) if 

1. X=Vq•+Vx(I),and 

2. (I)N C- (I) and •N C-- •, as well as 

3. X•C-Vx(I)s+ 

Next, consider function spaces that are (possibly piece- 
wise) polynomials, (sectionally defined on subsets fli C_ fl 
that are triangles, parallelograms, or at times such with 
one curved side (coinciding with a part of F)). 
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Definition 2.7 Let 

•pp _ span{x/ym .O_<l, mandl+m_<p} and 
QP - span{x ty"• '0_<l,m_<p} 

be polynomial spaces of total and separate degree at most 
p, respectively. [] 

Definition 2.8 We call fl an algebraically simple domain 
J where J < oc and each Fj is a segment of if F = LJj=iFj, 

an algebraic curve in the sense that 3p0 such that 

1. •f• {(x,y) • 1•2. p0(x,y) = 0} = F, 

2. p0 is merely a product of at most J polynomials, each 
irreducible over R, so that, defining 

der 

n__• = the separate deg(p0), and 
der 

• = the total deg(p0), 
each deg(p0) is minimal. 

(As an example, let po(x,y) - (1- x2)(1- y2) for fl - 
S = (-1, 1) 2 with n s = 2 and •s = 4.) [] 

Definition 2.9 Let PN denote the L2-projection onto Y•¾: 

P.v ' Y 9 q •-• Pwq • Y.¾, (PsTq, s) = (q, s) Vs • Y•¾. 

3 Poisson's equation 

Let U satisfy the following Poisson problem 

(17) 
-AU = f in fl 

U = g on F0 and 
o._U_.u = h on Fx On 

F = F0 UF1, F0 f•F1 = O. We assume that we may 
use linearity (or superposition) to subtract off a special 
function so that we may take vanishing Neumann-data: 
h=0. 

Let X = {v E H(div): v.n = 0onF•} andY = L 2. 
Suppose U E Y and let u = VU E X so that div u = Au 
Y. As b was defined before, we define a and 

(18) 
a(u, = -(u, v) Vu, v X, 
fX(v) = frog(V'n) ds VvX, and 
f2(q) = (f,q) VqY. 

Then, a variational formulation of (17) is given by the 
system (6). This is semi-simply set provided f • Y, g • 
HX/2(F0), which is henceforth assumed. As (X,Y) is 
Hodge-conforming in (X, Y) and X is divergence-stable 

with respect to (X, Y), the continuous problem is well- 
posed. 

We now construct a new mixed method projection AN 
with some of the same properties as the Raviart-Thomas 
projection but with better error estimates (with respect 
to p). Note that u = VU and •r = U throughout our 
discussion of Poisson's equation. 

3.1 One element Galerkin mixed method 

We will take - as a precursor to the next subsection - 
the instance of one element: let fl be a triangle, a paral- 
lelogram, or - generally - let the domain be algebraically 
simple and convex. Also, to further simplify, let g = 0 and 
rx 

Let •N C_ poQp+•-na = Qp+• • Ho•(fl) and define the 
discrete spaces Yx = A•N and Xx - V•N. Clearly 

A 
•v " , Y•v 

y 

commutes. 

Lemma 3.1 { (XN, YN) } N is Hodge-conforming in 

Proof by construction. [] 

Lemma 3.2 {XN}N is divergence-stable with respect to 
(X, •). 

Proof A simple consequence of the bijection prop- 
erty of A and the elliptic (merely energy) estimate 
IlV(a)-qllx < Cllqll. [] 

Thus the discrete problem is well-posed. As div u = AU • 
Y by assumption, we may define V to be the unique solu- 
tion to: 

(19) AV - PNAU in fl 
V = 0onF. 

Then define 

(20) ANU 
We collect a few simple properties of the projection AN: 

Lemma 3.3 Let AN : X -* XN be as defined in equa- 
tion (20). Then AN satisfies the crucial commutative prop- 
erty: 

div ANu = P•vdiv u, Vu • H(div), 



Divp, Gradp, Curlp, And All That 207 

stability in Hi: 
IIAxull• <_ Cllulll, 

as well as the quasi-optimal error estimates, in case f• is 
a triangle or a parallelogram: 

Ilu - ANulI• < Cp-•+•-Xlldiv ull•, for s - 0, 1. 

Here, if we wish, we may estimate lidiv ull• < llull•+x. We 
note the quasi-optimal L 2 estimate which improves upon 
the estimate for the Raviart-Thomas projection in [20]. 

Proof The commutative property is seen by inspection. 
Recall from (20) that ANu = VV. By elliptic estimates, 
we have the shift inequalities: 

IlVVll• • IlVll•+x 5 Cll/XVll•-x for s- o, 1, 

so that stability in H x is a consequence of: 

IlVVII1 _< cIIPlv•XUllo _< Cll•UII0 _< Cllullx, 

For the error estimates, recall also that u - VU and ob- 
serve that 

IIV•- vvIll 5 IlV- vIl• 5 C[Idiv u- P:vdiv •l[o, 

and use the L 2 estimate in the next lemma. Similarly, 

[Ivg- vrllo 5 IIU- vIl• 5 oliniv •- PNdiv 

and with another application of Lemma 3.4, the claim has 
been proved. [] 

Lemma 3.4 The following quasi-optimal estimates hold: 

IIv - P,vvll-• <_ Cp-•-•llvll•, for s = 0, 1 

for r •_ 2OZmi n where O•mi n is 7r divided by the largest inte- 
rior angle of any corner of •. 

Proof Let s = 0, and note that, with A• = v and 
AOx = v,¾ for some • • ß and •N e •IIN, IIv- PNvllo -- 
II/X(• - •s)11o < ½11•- •NII-•. This may be bounded 
from above by ½P-•11•)11•+2 -< ½p-•llvll•, provided each 
of these norms are finite, using approximation results es- 
tablished in [3] on either a standard triangle or a square. 
Given v • H • we may write the solution • as a finite sum: , 

•) ----- Ei Ci•)i 4- OR, with IICRI[•+2 4- • Ic, I < ½llvll• and 
0i PaX(P) • = Y•-j=o [ log pl j c)j (0), in local polar coordinates 
(p, 0) near a corner of f•; X and ½j are smooth with X 
vanishing outside a neighborhood of the corner. If the in- 
terior angle of the corner is w, then a is a multiple of 7r/w. 
Now, also by approximation results in [3], •½N, ½N • •N: 
I1½i- ½sll-• <- CP -'• and lien- ½NII2 _< Cp-•llCnll•+2, 

so that lie - ½N[12 -< Cp-•llvl[•, for r <_ 2amin, the latter 
being at least four. 

For s = 1, duality and the projection property yields: 

(v - e•v, w) 
IIv-PNvII-x = sup 

•H• 11•11X 

-- sup inf 
w•H• wN•YN 

(v-P•v,w-w•) 

< sup inf 

5 Cp-•[lv- PNvllo 

once more employing the L 2 approximation result. [] 

Remark 3.1 We sketch a proof of the preceding lemma 
allowing for r arbitrarily large: redefine qZ N by first em- 
bedding • C C C S in a circle C and further in a square 
- using the Stein extension [23] - on which we let qLv be 
defined over S, but solve the Poisson problem for • on C 
and then restrict functions to f•, see also [9]. One would 
use approximation results for S, but regularity results for 
C. 

We note that the collection {(•N, kI/N)}N, {(•, •It)}, and 
{XN}N{(•,q0} is Helmholtz-conforming in (X,Y)with 
the choices (I)• = 0, (I) = Ho •, and • = H•/R. 
Remark 3.2 We can sketch a proof of the preceding 
lemma for f• algebraically simple and convex: redefine 
by first embedding f• in a square S on which we perform 
the preceding constructions and then restrict functions to 
12, see also [9]. 

Proposition 3.1 For this mixed method the following er- 
ror estimates hold: 

Ilu- uNllx 
IIU- UNIIV 

Moreover• 

_< Cp-•lldivull•, and 
5 Cp-•(lldiv ull• 4- IIUIl•). 

IIU- UNIIY 5 Cp-•llUll•. 

Proof The first two inequalities follow from the Lemmas 
in this subsection coupled with Lemmas 2.2 and 2.3. The 
last inequality is a consequence of the analysis in [8]; we 
note, in particular, that hypotheses (H1)-(H3) and (Ha) 
hold. In addition, (H7) holds with Es = P,¾. Theorem 3 
and the estimates on page 275 in [8] then yield the claimed 
error estimate. [] 

A curved side of one element coinciding with F is proposed 
to be taken care of as described in [9]. 

If coupled with an appropriate method of quadrature, 
this could be used as a spectral method. 
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3.2 Multiple elements 

Let F• be a convex, polygonal domain (possibly with curvi- 
linear segments of the boundary F). Geometrically decom- 

M 
pose • = LJi=•i into triangles or parallelograms in such a 
way that a pair of distinct •i intersect only in three pos- 
sible ways: (1) O, (2) a common side, or (3) a common 
vertex. Let R = (-1,1) 2 and T- {(x,y): Ixl < 1, -1 < 
y < x} denote a reference square and triangle, respectively. 
Let Fi be an afiine, orientation preserving (i.e. the Jaco- 
bian det(DFi) > 0) mapping which maps 
is a parallelogram and onto T if •i is a triangle. 

Then we define the space of piecewise polynomials 

S p : {U • L2(•) ß for 1 • i < M, 

{ •P(R) (21) u[•, o (Fi) -1 • PP(T) if 
and we choose 

(22) •N = SP+I n H2(a) n H•(a), 
Xx=V•x, •v=V-Xx=A•. 

In the second to last identity, we understand div as defined 
on H(div). Thus •,• g C•(•) and X,• • [Cø(•)] 2, see 
[7J. The functions in Y• are allowed to be discontinuous. 

Remark 3.3 We are obviousl• overshooting with C • el- 
ements - yielding C ø ones for Xx - when it would have 
su•ced to have continuit• of the normal components of 
functions in XN across inter-element boundaries, i.e. 
continuous across O•i • O•j. We know that it is possible 
to define a space •v achieving this (algebraic conditions. t) 
with quasi-optimal approximation properties - a•er all, the 
present C • elements would be embedded. 

Definition 3.1 The mixed projection is (extended to be) 
defined as in (20)' 

ANN de• 
where we may define V to be the unique solution in H• (•) 
to: 

as div u = &U • Y by assumption. Note that V 

Instead of going through the lemm• from the previous 
section one by one, we state the main result. 

Proposition 3.2 This mi•ed method is well-posed and the 
following error estimates hold: 

II-11x Op-lldiv11, 
IIU- Uxll Op-(lldiv + IIUII). 

Proof Lemmas 3.1 and 3.2 hold as before for the new 

(XN, YN). Lemmas 3.3 and 3.4 hold - modulo an issue on 
regularity which is addressed next - as before. The prob- 
lem (23) retains the regularity properties used in Lemmas 
3.3 and 3.4 due to Thm. 2.4.3 in [12] (for H 2 regularity) 
as well as [11] (for higher regularity than H2). Finally, one 
again uses Lemma 2.3. [] 

Increasing degree finite elements of higher degree of conti- 
nuity have been considered in [29], [28], [27], [21], and [24] 
- among others. 

4 Stokes' equations 

Linearized, incompressible, and viscous flows are often 
modelled by the following Stokes problem in the velocity 
(•)- pressure (P) formulation with unit kinematic viscos- 
ity: 

-A•+VP = ff in •, 
(24) V.t• = 0 in F• 

along with some appropriate boundary conditions (no-slip 
or stress-free, e.g.) on F. 

Let X = [H•] 2 and Y = L0 2 = {q • L 2 : (q, 1) - 0} 
for no-slip boundary conditions. Let rigid body mo- 
tions be denoted 7g = {v • [H•] 2 : eij(v) = 0} where 
eij(v) = (vi,j + vj,i)/2. Then we may reflect stress-free 
boundary conditions by selecting•.• = 7g ñ (the orthogonal 
complement of 7g in [H•] 2) and Y = L 2. As b was defined 
before, we define a and fi: 

(25) 
v) = (W, Vv) W, v X, 

f•(v) = (F,v) Vv •X, and 
f2(q) = 0 Vq•Y. 

Then, a variational formulation of (24) is given by the sys- 
tem (6). This is semi-simply set provided F • X* which 
is henceforth assumed. As (X, Y) is Hodge-conforming in 
(X, Y) and X is divergence-stable with respect to (X, Y), 
the continuous problem is well-posed. The similar state• 

~ 

merit for (X,Y) also holds, cf. õ3-4 in [22] and [26]-[25], 
provided the compatibility condition (F, r) = 0, Vr • 7• is 
satisfied. Note that u = t• and •r = P throughout our dis- 
cussion of Stokes' problem. Let us, finally, define a special 
class of problems (pressures): 

(26) I?(fl) def (p • Y ' 3½ • Ho•(F•) ' p = 

4.1 One element Galerkin mixed method 

Let fl be a triangle, a parallelogram, or - modulo approx- 
imation properties of underlying polynomial spaces - let 
the domain be algebraically simple and convex. 
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First the case of no-slip b.c. Let (I)N -- •N = BP = 
po 2 Qp+l-2_n• where po and _n• are defined as in section 2. 
We now set 

XN : •7 X B p (• •7BP, (27) 

and 

(28) 

Now 

YN = A(B p) = •7. XN. 

o A 

V'• /V" •ijectiø7 
XN XN 

commute. Essentially, •7 x (I) N is used for velocity approx- 
imation and Aq•x for pressure approximation. Now, as in 
the previous discussions, the isomorphism A: q• > ¾x 
can be used to get 

(29) Ilvibll(Y;X) c 

unifornfiy. Note the new definitions of X and ¾ (as com- 
pared to the situation in Section 3) which might have made 
this task much harder, cf. [18] as compared to [9], how- 
ever now turns out not to be. Lemmas 3.1 and 3.2 hold as 

before for the new (XN, •v): 

Lemma 4.1 {(X:v,YN)}N is Hodge-conforming 
zn (X, Y). Furthermore, {X:v}•v is divergence-stable with 
respect to (X, •). 

Proof by construction. 

Lemma 3.4 for the new YN also hold but merely for P ß 
IP(f/) as we are dealing with p0 2 to handle no-slip b.c. 

Proposition 4.1 This mixed method is well-posed and the 
following error estimates hold: 

Cp-rllullr+l, and 
CP-r(IlulI++IIPII), 

provided P ß •P(•). 

Proof As the spaces are Hodge-conforming and Ms C 
M, we note that u = V x • for some • ß H02(f•) and 
that we may approximate this stream function at optimal 
rates within B p using results from [24] and [14]. One, in 
addition to the previously established facts, uses Lemma 
2.3. [] 

Thus we can create p-stable Stokes elements which possess 
quasi-optimal approximation properties; furthermore the 
exact solution is solenoidal and - of course - satisfies no- 

slip boundary conditions. The cost of this was the (old 
remedy of an) enlargement of the velocity subspace. Note 
that we have some additional freedom in the choice of what 

to put in the argument of curl (.) in Definition 2.6. One 
may also use ß = po27 •p+l-2-nn with optimal approximation 
properties, e.g. 

We note that the collection { (•N, IItN) } N, (((I>, lit) }, 
and {XN}N is Helmholtz-conforming in (X, Y) with the 
choices •s = qLv as selected, • = Ho •, and q• = H•/R. 

For stress-free b.c. we may reduce the exponent of po in 
the definition of •s and q•N leading to: 

Corollary 4.1 Let •)N = Po QP+•--•n • Lo 2 and •:v = 
P0 Q p+l-n-a. Then, this mixed method is well-posed and 
the following error estimates hold: 

Ilu-uvllx _< Cp-rllullr+x, and 
liP- P2vllY _< Cp-([lull+x q-IIPlIO. 

Proof Please note that .•x = V x •>N + V•'N C 
as divv = O, ct•rl v is constant in f• for all v ß 7•, and 
0=•=0onPforall0ß•)s and allyß 

The analysis presented here could easily be extended to the 
case that homogeneous Dirichlet data is given on a part of 
the boundary, not including a corner, and natural (stress) 
boundary conditions on the rest. 

Remark 4.1 We conjecture that, for no-slip b.c., it is still 
possible to avoid the special class P(f•). Let •N C Hol(•'•) 
and •N C_ H • /•(•) and require Oq/On - 0 for all q ß •N. 
Then v . n = 0 already for any v ß XN and we can enforce 
v . • = 0 by requiring c)• = -• on F. We exhibit the said 
construction for • a square, extending the analysis above 
to the class •(•) - {p ß Y • Cø(•) ß p(+l, +1) - 0}. 

Proof Given a • ß 62N (that may approximate the ex- 
act potential of the pressure optimally), our task is to con- 
struct a • ß (I) N SO that there is compatibility: 

(30) On Or on Of]. 
Towards this end allow us some notation: let œi be the ith 
Legendre polynomial and 

Li(t) = œi-•, for i > 1 
--1 

and L0 = œo so that 

1 

Li -- 2i - 1 (œi - i•i-2), for i > 2, 
Lx = œ0+œ•, andL0 = œ0. 



210 ICOSAHOM 95 

Then, let us begin with the general description of •b: this 
function may be represented as 

p 

i,3--=0 

subject to the requirements that: 

/f• • ---- • •ij gi Lj • 0 
i.j=o 

(since ff• Li • 0 for i p 2) as well as 

-- = 0 on O•, 
On 

which can be verified to be satisfied iff, Vi, j, 
P P P P 

i=l,i odd i=1,i even j=l,i odd j=l,i even 

These constraints already imply that •(•1, •1) = 0. To 
such a • we wish to find a • 6 •N so that • = -• on 
lhe boundary of •: • can generally be expressed •: 

p 

i,j=0 

subject to the requirement that: 

a = 0 on 0•, 

which can be verified to be satisfied iff 

•0 = 0 if one or both of i and j e {0, 1}. 
Hence a general • takes the form: 

p 

i,j=2 

•e then list the identities that • must satisfy resuking 
from requiring (30) on each of the four boundary segments: 
Firsl, on x = -1, 

e• = -• 
p 

i.j=2 

j=0 

2j- 2j + 

) j=p-1 

and the expression for •b• is 

p p--1 

--•Y --- -- Z •ijLi(--•)•J-l(•J) ---- -- Z •O'j-i'l•j(•) 
i,j=0 j=0 

and we equate like terms to obtain the following final equa- 
tions. 

Onx=-l:Vj>_ 1 

1 P [p/2] 
4j + I Z(-1)iøzi'2j+x = Z 20,2•, i=2 k=j+l 

p [(p-•)/•] 

! Z(--].)'Oii,2j = • •0.2k+l, 
4j 1 i=2 k=j 

with a summation over an empty set convened to be zero 
and no single index of c• or/f larger than p allowed. One 
makes use of the fact that •-•j/•o,j = 0 to ensure that the 
two lowest-order sums above (resulting from taking j = 1) 
are not over-determined. Similarly, 

On x = +1 'Vj _> 1 
p [p/2] 

1 

4j + 1 • O•i'2j+l ---- -- Z •0,2k -]- 21.2k, i=2 k=j+l 

p [(p-I)/2] 
1 

= - + 
i=2 k=j 

To prevent the two lowest-order sums above (resulting from 
taking j = 1) from being over-determined, we now also use 
that •-•j ,3Lj = 0. Also, 

Ony=-l:Vi_>l 
p [p/2] 

1 

4i + 1 Z(-1)Jøz2i+•'J = Z ,22•,0, 
j=2 k=•-•--1 

p [(p--1)/2] 
1 

4i- I Z(-1)Jøz2i'J = Z 
j=2 k=i 

and, finally, 

On y = +1. Vi _> 1 
p [p/2] 

1 

4i + 1 y• OZ2i+l'J -- -- Z •2k,O +/•2k,1, 
j=2 k=i+l 

p [(p-I)/2] 
1 

4i- 1 Za2i,j = - Z /f2•+x,0 +/f2•+•,x, 
j=2 k=i 
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again using that certain ,8-sums vanish when one index is 
frozen at zero. It is clear that, for p > 5, we may solve this 
system for a (for p > 5, there is more than one solution, 
and interestingly, for p - 4 the system is over-determined). 
Of course, we are still restricting the function values at the 
corners, in fact V½ = V• -- 0 at the four corners, and 
also the pressure (as A•) is forced to be zero there. We 
may factor out this proviso with the help of the following 
remark. [] 

Remark 4.2 Obviously, in the present situation with no- 
slip b.c., the corners of f• are classically known to be sin- 
gular boundary vertices (with the number of elements abut- 
ting the vertex k = 1), cf. [22] and [26]. Before we pass 
on to the natural remedy: more elements, we note that it 
zs possible to remove the requirement that the continuous 
pressure (if it is smooth enough) be zero at the corners of 
f• through a slight extension of the present construction. 

Proof Let the pressures be augmented by the set of 
bilinear functions, •v = •x © Q• • Y. Also let 
the velocity space be augmented by biquartics, -•N = 
•,¾ O [Q412 CI X. (•N = A•x and •N = V X 
•¾ © y•N.) Then, the L2-orthogonal decomposition: 
Vq • YN,•q• • YN,q2 • Q• : q = q• + q2, holds as 
(q•,q2) = (A.ff;•,q2)= -(X71b•,•7q2)+ < c9•/c9n, q2 >= 
(t)•,Aq2)- < .•,Oq2/On >= 0. By results in [26], [25], 
[22], there holds the divergence-stability: ¾q2 G Q1, •u2 G 
[Q412 c•X' div u2 = q2 and Ilu2llx _< CIIq211v with C inde- 
pendent of p. Actually, bicubics would suffice due to the 
stability of ([•212 c1 X, Qo cIY). The already established 
divergence-stability of the pair (XN, YN) yields similarly a 
u• associated with q•, and we obtain, with u = u• + u2, 
that div u = q and 

es•tabli•shing combined divergence-stability of the pair 
(xx, Yx). [] 

In this manner, it is possible to give optimal convergence 
rate results also for pressures not subject to corner con- 
straints, for P & H • with s > 1 directly applying the 
above and for P • H • with s • (0, 1) by first modifying P 
near the corners. Now •N • [H•] 2. 

We note that we could just as well have used harmonic 
q9.'s then needing to cook up corresponding velocities (why 
not gradients plus curls of A-•q2?), but instead we'll go 
on to the more natural remedy. 

4.2 Multiple elements 

We refer, first, to the definitions at the beginning of section 
3.2. Let f• be a convex, polygonal domain (perhaps with 
piecewise curvilinear boundary F). We choose (for no-slip 
B.C.) given $P defined in (21): 

(31) •N : •ItN: Sp+I f') H02(f•), and then 
X:v = V x •:v E• V•:v, Y:v = V ß X:v = A•. 

In the second to last identity, we understand div as defined 
on H(div). Thus the discrete velocities XN _C [Cø(•)] 2, see 
[7]. The discrete pressures are allowed to be discontinuous. 

Remark 4.3 We may be overshooting with C • elements 
for both •N and qtN - yielding C O ones for XN - when 
it would have sufficed to have continuity of the normal 
components of the combined functions in XN across inter- 
element boundaries. We do not know if this is possible for 
general elements with quasi-optimal approximation proper- 
ties when we impose the additional constraint that •- - W• 
be continuous across Of•i 91 Of•j. It is possible, however, 
through a similar construction as in Remark ,•.1 for el- 
ement divisions consisting solely of parallelograms. We 
can also handle the compatibility constraint (30) across the 
two catheres in the standard triangle, which may suffice for 
many divisions. 

We state next the main result in this subsection for no-slip 
b.c. 

Proposition 4.2 This mixed method is well-posed and the 
following error estimates hold: 

provided P E ?(f•). 

_< Op-llull+, and 
-< CP-(IlulI++ IIPII), 

Proof As in Prop. 4.1 noting that Lemma 4.1 holds as 
before for the new (XN, YN). [] 

For stress-free b.c. we may redefine (I) N and •I/N: 

Corollary 4.2 Let •)N = •N = S p+ • F1 Ho • (fl). Then, 
this mixed method is well-posed and the following error es- 
timates hold: 

Ilu- ullx 
lip- P11¾ 

_< cp-llull+x, and 
<- CP-(IlulI+ + IIPII0. 

Remark 4.4 We conjecture that, for no-slip b.c., it is still 
possible to avoid the special class ?(f•) - and not only by 
the means mentioned in Remarks 4.1 and 4.2. It might 
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be possible now to approximate quasi-optimally by using 
solutions to Poisson problems with homogeneous Cauchy 
data on the boundary F in the elements abutting F, which 
are chosen to preclude the existence of singular boundary 
vertices. This is merely a conjecture. 

Remark 4.5 We have actually not taken advantage of the 
freedom in selecting •N • krN, allowing for some inter- 
esting possibilities (de-emphasizing pressure approximation 
for example). 

[8] 

[9] 

[10] 

Elements with one curved side coinciding with F are, once [11] 
more, proposed to be taken care of as described in [9]. 

Finally, we refer to [29], [28], [27], [21], and [24] among 
others for treatments of C • increasing degree finite ele- [12] 
ments. 

ß 

5 Concluding remarks [13] 

A number of very interesting open questions immediately 
present themselves. The main one is probably how well 
such methods would perform in practice. In a joint project 
with Tad Janik of University of Alabama in Huntsville we [14] 
hope to address these issues. 
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