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Abstract 

Recent theoretical error estimates predict that high-order 
finite elements have the potential of overcoming a number 
of numerical difficulties associated with shell problems. In 
this work we support the error analysis by numerical ex- 
periments on thin, "pinched" shells of revolution loaded 
by t•vo equal and opposite radial point loads. Different 
geometric categories of shells have strikingly different de- 
formation properties under the same loading and kinemat- 
ical constraints. This is illustrated by examples covering 
elliptic, parabolic, and hyperbolic shells. We demonstrate 
that elements of relatively high order (degree p - 4...6), 
indeed, give quite accurate results as compared, e.g. with 
linear or quadratic elements which often lead to poor scale 
resolution and sometimes even to total failure. In a se- 

ries of experiments we examine the impact of the degree 
p on a fixed problem for each shell category. In the hy- 
perbolic case we also give a direct comparison between the 
traditional h-version and the p-version of FEM. The rel- 
ative superiority of high-order methods in thin shells is 
confirmed by our results. 
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I Introduction 

The aim of this paper is to demonstrate the effects of the 
shell geometry in linear shell problems and to advocate the 
use of high-order finite elements in these problems instead 
of using some special case-dependent "shell elements". 
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The approach we suggest here is that of standard finite 
elements of (sufficiently) high degree. How high the degree 
should be depends on the case, but normally it is in the 
range from 2 to 8. From the programming point of view 
this requires using the "p-version" where the degree p is 
chosen by the user [13]. 

Admittedly, the high-order elements appear much more 
complicated than the traditional low-degree elements spe- 
cially tuned for shells. However, raising the degree of- 
ten has its advantages (at least within the standard FEM 
framework) as will be shown by the examples. In the prac- 
tical diversity of shell problems induced by variations of ge- 
ometry, load, and boundary conditions, high-order meth- 
ods are in general more reliable (or "robust") than low- 
order ones. In addition to this, in a given problem high- 
order methods often perform better xvith a given comput- 
ing effort. 

The basic source of numerical difficulties in shell prob- 
lems is the small dimensionless parameter; the effective 
thickness of the shell, that appears e.g. in the energy 
formulation of the problem based on any classical dimen- 
sion reduction model. The effective thickness is defined 

as t = d/L, where d is the actual thickness of the shell 
and L is the length scale one is trying to resolve with the 
numerical scheme; often the diameter but there are other 
possibilities as well [3]. 

Numerical difficulties arise when parameter t is small, 
i.e., when the shell is (effectively) thin. In fact, this must 
be assumed for the dimension reduction models to be valid. 

Why high-order methods are more reliable for thin shells 
may be seen from rather simple error analysis in the energy 
norm[3]. The result of this simplified analysis is easily 
stated: The relative error behaves as 

(1) error .• K(t)(h/L) p, 

where h is the mesh spacing in the finite element scheme, 
p is the the degree of the elements, and K(t) is a lock- 
ing factor which may diverge as t -• 0. In the worst cases 
K(t) -0 t -•, but there also are cases where the factor is not 
t-dependent, i.e., K(t) -0 1. In the latter case, the finite 
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element scheme resolves the length scale under considera- 
tion as it should in the sense of approximation theory, i.e., 
optimally. Thus, there are cases where error amplification 
by factor 1/t (as compared with the best approximation) 
occurs in the finite element model and other cases where 

the numerical scale resolution is optimal. 
The estimate (1) gives us an idea of when locking (as t -• 

0) is most severe and how we should deal with it. The most 
dramatic failure of the finite element scheme is expected in 
cases where 1) the worst locking factor 1/t arises, and 2) 
the length scale to be resolved is large compared with the 
thickness of the shell, i.e., t is small. These worst features 
are joined in the so-called membrane locking. This occurs 
in the approximation of smooth, inextensional components 
of the displacement field; see [1], [10], [11]. Numerical 
locking in boundary layers is a more hidden effect, but it 
can also cause large errors in local quantities such as stress 
maxima. 

In the model problems to be studied below, global inex- 
tensional deformations will be ruled out by the kinemat- 
ical constraints, so the overall membrane locking is not a 
problem. However, locking can still occur in the resolution 
of the scales of the layers, since the worst locking factor 
K(t) • t -• in (1) occurs also here [3], and since the dom- 
inant layer scales are relatively wide (see [3]-[9], [•1]). 

Regarding what to do with locking, we can see from 
estimate (1) that when t is small but positive, raising p 
helps to narrow the gap in between the "best" and the 
"worst" cases and thus makes the finite element scheme 

more robust. Indeed, the estimate tells us that in order 
to achieve a given accuracy at given t and p, one needs in 
the "worst" cases mesh overrefinement by factor • (I/t) •, 
as compared with the "best" cases. For example if t = 
0.01, the overrefinement required at p = 4, say, is rather 
moderate as compared with that required at p = 1. Here 
is in fact the basic reasoning that suggests higher degrees 
in cases where locking is likely to occur in some relevant 
length scale. 

In Chapter 2 we give the mathematical settings of the 
linear shell problem based on one of the familiar dimen- 
sion reduction models. In Chapter 3 we present the re- 
suits of a series of numerical experiments on the "pinched" 
shell problem, which is one of the well-known "obstacle- 
course" tests for numerical shell analysis [1]. Conclusions 
are drawn in Chapter 4. 

2 The linear shell problem 

In this work we study thin shells of revolution. They can 
formally be characterized as domains in •a of the type 

{ t (2) a- , 

where t << diam(f•) is the (constant) thickness of the shell, 
I' is a surface of revolution defined as 

(3) I • : {X • •}•3 I 371 • [--1, 1], x• + x• = q)(Xl) 2, 
o > 0}, 

and n(_x) is the unit normal to F. Here we have chosen the 
axial half-length of the shell to be the length unit. In the 
examples we set t -- 0.001, so the shells to be studied are 
quite thin. 

As is well known, there are three main categories of shell 
problems depending on the geometry of the mid-surface of 
the shell. For shells of revolution the different geomet- 
ric categories can be defined in terms of the function ½ 
in (3). The Gauss theory of surfaces states that at a given 
point a surface is called elliptic, parabolic, or hyperbolic, 
whether the Gauss curvature at that point is positive, zero, 
or negative; respectively. In the current setting, for a point 
X------ (Xl,X2,X3), r is 

[E ] elliptic, if ½"(x•) < O, 

[P ]parabolic, if (•"(•1) ----0, and, 

[H ]hyperbolic, if q)tt(Z1) > 0. 

In the cases below it is assumed that for a given shell the 
condition holds on the whole interval [-1, 1]. 

A shell is a three-dimensional body for which the stan- 
dard 3D theory of elasticity can be considered accurate 
for small deformations. Here we consider one of the clas- 

sical dimension reduction models which has gained pop- 
ularity in finite element modeling. This model is similar 
to the Reissner-Mindlin model for plate bending and is 
sometimes named after Naghdi. In this model, the dis- 
placement field u has five components u, v, w, 0, •, each a 
function defined over the mid-surface F. Here (u, v) and w 
are, respectively, the tangential and normal displacements 
of the mid-surface; and 0, ½ are the so called rotations. 

We parametrize F with the usual axial/angular (princi- 
pal curvature) coordinates so that 
F- {•(Xl,X2) I - 1 < Xl < 1, --7r < X 2 • 7r}, where 

(4) !(x•,x2) -- (xl,q}(xl)sinx2,q}(Xl)COSX2). 
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Then u, v, w are defined as the projections of the dis- 

placement on the directions (12) 
1 

--- ' •--2 , •--3 -- •1 X •--2, (5) e_ 1 A10xl A20x2 
respectively, where Ai are the so called Lam& parameters 

(6) A1 - x/1 + ,'(xl) s, A2 -- *½1), (14) 

and the rotations are defined by 
(15) I Ow u i Ow v 

(7) 0 = Z - 

where further Ri are the principal radii of curvature de- (16) 
fined as 

(8) R1 = -&/&, R2 = & •. (17) 
Note that 

Assume that the shell consists of homogeneous isotropic 
material with Young moduIus E and Poisson ratio •. Then 
the total energy of the shelI in our dimension reduction 
model is expressed as 

(18) 
(9) z(•)= !• [• •(•,•)+ •%(•,•)•_ •(•), 2 - 

where D = E/(1-• 2) is a scaIing factor, q(•)is the exter- 
nal load potential, and a(A,A) and b(A,A) represent the 
portions of total deformation energy that are stored in (19) 
membrane and transverse shear deformations and bend- 

ing deformations; respectiveIy. The latter are quadratic 
forms independent of t and defined as 

•(•,•) = •(•,•)+•(•,•) 

(10) 
i,j=l 

(11) b(_u,_u) = 

[ = __ f• s AlAs d% I "(nn +nss) s + (1 - ,) y• 12 
i,j=l 

where ]•ij, Pi, and I•ij stand for the membrane, transverse 
shear, and bending strains, respectively and a is the so- 
called shear correction factor. We shall simply choose a = 
1. The strain-displacement relations are linear and involve, 
at most, first derivatives of the displacement components. 
For shells of revolution they can be expressed as 

1 Ou w 

A10xl 

1 (10u 10v v OA2) •s = • As Oxs • Al OXl 1•s OXl ' 
1 Ou u OA2 w 

2 

i Ow u 
O, Pl = A10xl 

10w v 
½, Ps = A20x2 Rs 

I O0 
/•11 -- 

A10xl' 

I { 1 O•: I 00 • A10Xl q 
1 10A20w 

I O• 00A2 

Within the above dimension reduction model, the ex- 
act displacement field is defined as the minimizer of the 
energy (9) under the assumed (homogeneous) kinematical 
constraints on &v. Finite element approximations can then 
be derived analogously applying the same energy principle. 
Indeed, since the strains involve only first derivatives of the 
displacement field, standard C ø elements can be used. In 
this work we shall minimize the energy exactly as given by 
(9) through (11) without any numerical modifications. For 
further aspects of shell models and possible numerical tun- 
ings, the reader is referred to [11], [12] and the references 
therein. 

As model problems we consider shells of revolution of 
the canonical type 

(20) (b(Xl) = I + •xx •, 

where • • (-1, oc) is a parameter which determines the ge- 
ometric category of the shell in question. In the numerical 

• (elliptic), • - 0 (parabolic), or examples we choose • = -• 
• = 1 (hyperbolic). A "pinched" loading is assumed where 
two radial point loads act on the opposite sides of the shell 
at x = 0. The same kinematical constraints are assumed 
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Figure 1: Elliptic: ½(x•) = 1 - •x 1. 
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Figure 2: Parabolic: ½(x•) = 1. 

at both ends of the shell, so by symmetry the domain is 
reduced to the set 

(21) = {(:•l,X.:,_)IO < x, < 1, 0 < x2 < '7't'/2}, 

assuming that the point load is imposed at x• = 0, x2 -- 0. 
The load potential q in (9) is then q(_u) = Q w(O, 0). 

;Ve shall look at the performance of standard finite el- 
ement methods where each component of the displace- 
ment/rotation field is given the same finite element rep- 
resentation. This is based on triangular (cf. [13]) elements 
on •v of varying degree p. The underlying computer code 
[2], follows the standard p-version philosophy with hierar- 
chic shape functions derived from orthogonal polynomials 
[13]. 

3 Numerical results 

We present here results from numerical experiments on 
pinched shells. In Figs. (1), (2), and (3) we show the three 
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Figure 3: Hyperbolic: &(x•) = 1 + x2•. 

model shell geometries, each one representing one of the 
three categories defined in Chapter 2. 

In the following we first compare the differences in defor- 
mation fields of the shells under the same loading. Having 
established the general setting we examine the effect of 
the degree p of the elements in each case separately. Fi- 
nally, we compare the impact of the traditional method of 
decreasing h while using low-order elements in the •'per- 
bolic case. The w-component of the displacement field is 
shown in the figures. 

In all cases the loading and the computational domain 
are as described in Chapter 2. Additionally we define the 
Poisson ratio y = 0.3 and let t = 0.001. The kinematical 

constraints at x = I are u = v = w = 0. Unless other- 

wise stated, the mesh is a regular (aligned) 9 x 9 grid with 
128 elements, diagonals moving from the bottom-left to 
the upper-right corner of w. Thus the number of degrees 
of freedom varies depending on p as follows: 

p I 2 3 4 5 6 [d.o.f[405 [ 1445 ] 31251 5445 [ 8405 [ 12005 ] 
Note that if the Koiter shell model with vanishing shear 

strains were assumed instead of the Reissner-Mindlin type 
model of Chapter 2, the transverse deflection under the 
load would be finite. In our case, however, the "exact" 
value w(0, 0) is minus infinity. 

3.1 Geometric categories 

In Figs. (4), (5), and (6) we give a global visual compar- 
ison of the deformations at p = 6. It is evident, and also 
expected theoretically [4], [5], [9], that different geometries 
have clearly different profiles. 

In the elliptic case the pinch-through can be seen from 
the "stacked" view. The contour plot (20 levels) is some- 



Pinched Shells Of Revolution 197 

what restless. Nevertheless, the deformations are concen- 
trated in the vicinity of the load. The expected (dominant) 
scale of the range v• at the load is not well resolved due 
to the relatively coarse mesh. At x - 1, however, there is 
a trace of boundary layer. 

In Fig. (5) we see the two dominant components of the 
displacement field in a parabolic shell. First, there is a 
very large local deformation in the vicinity of the load. 
Again, the largest deformations should appear in the range 
"• v• which is within the most deformed area. Secondly, 
there is a long-range damped oscillation in the angular 
direction. This is a predicted "layer" in the scale -0 • [9]. 
In capturing this layer, it helps to have the mesh axially 
aligned as we have here (see [11]). The third possible layer 
at x = 1 is not visible at all. 

Finally, in Fig. (6) we have a drastic departure from the 
two previous cases. There is a layer decaying transversally 
from the characteristic line emanating from the origin. The 
predicted scale is • •/• [5], which is again well captured. 
Here the mesh diagonals help, since they are close to the 
characteristic line. The layer at x = 1 is also present in 
the picture. 

3.2 Elliptic profiles (Figs. 7-10) 

The deformations are all relatively small away from the 
load. As can be seen from Figs. (8), (9), and (10), at 
lower degrees of p there is some numerical oscillation. With 
higher p, we get smoother curves which has its impact 
when e.g. local stress maxima are computed. In Fig. (7) 
only the highest degree (p = 6) hints at slight bulging near 
the load. (The effect occurs within one element, so one 
cannot still be certain of the accuracy.) 

3.3 Parabolic profiles (Figs. 11-14) 

In the parabolic case the general trend is clear. Quadratic 
elements perform uniformly badly, whereas at p = 4 con- 
vergence is reached. Only at x - 0 is there any difference 
betweenp = 4 andp = 6. At p = 3 all features of the 
displacement field are captured, but the amplitudes of the 
maxima and minima are not obtained correctly. 

3.4 Hyperbolic profiles (Figs. 15-18) 

It appears that the hyperbolic case is the most challeng- 
ing one. Again the convergence is met with p = 4. This 
time, however; p - 3 does not give acceptable results, thus 
wrecking the myth of p = 3 being all that one ever needs 
when dealing with shells. 

0.02 _• ""' p-3 .0.02•.25 0.5 0.75 1 1.25 1.5 --p=2 

!Z;; '0'06II • = 

Figure 7: Elliptic: Profile of w at x = 0. 
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Figure 8: Elliptic: Profile of w at x = 0.25. 
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Figure 9: Elliptic: Profile of w at x -- 0.5. 
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Figure 5: Parabolic: Overview (p = 6). 
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Figure 6: Hyperbolic: Overview (p = 6). 
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Figure 10: Elliptic: Profile of w at x = 0.75. Figure 13: Parabolic: Profile of w at x = 0.5. 
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3.5 h-version in hyperbolic case (Figs. 19- 
21) 

Thus far we have examined the effect of varying p on a fixed 
mesh. In Figs. 19-21 we finally present results computed 
on finer grids withp = 2. The grids are regular: 9x 17, 17x 
17, and 17 x 33. We observe that even on the finest grid 
the low-order method does not compare with p - 3 on the 
coatset grid. (Note that the numbers of degrees of freedom 
are 10725 vs 3125.) Only at x -- 0, the finer grid catches 
the pinch-through better. •Ve should also recall that, as 
concluded earlier, p = 3 is not sufficient for this problem. 

4 Conclusions 

•Ve have demonstrated with our experiments the benefits 
of using standard finite elements of high order in shell 
problems. The differences in the characteristic deforma- 
tion fields of elliptic, parabolic, and hyperbolic shells have 
been shown as well. The connection between the charac- 

teristic lines and the deformation field is clear, especially 
in the hyperbolic case. In parabolic shells the axial lines 
play the same role. For elliptic shells, deformations are 
concentrated in the vicinity of the load. 

The experiments confirm the theoretical result that rais- 
ing the degree p reduces the need for mesh overrefinement 
needed to achieve a given accuracy for thin shells. It is 
evident that this effect depends only on the effective thick- 
ness and not on any other details of the problem. We have 
a consistent performance on all categories of shells of rev- 
olution. 

In summary, •ve conclude that •vhile staying within the 
standard finite element framework, raising the degree of 
the elements is a very effective way of improving the quality 
of numerical approximations to shell deformations. It is 
also a rather easy and natural way - when such an option 
in the program is available. 
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