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Abstract 1 Introduction 

In this paper we apply the Fourier-Gegenbauer (FG) 
method, introduced in [4], to evaluate spatial derivatives of 
discontinuous but piecewise analytic functions. The basic 
conception of this method consists of the reexpansion of the 
partial sum of Fourier series of a function, which does not 
converge in the maximum norm (Gibbs phenomenon), into 
a rapidly convergent Gegenbauer series. This technique is 
extended in order to construct the Gegenbauer series for 
the derivatives. Although the derivatives of discontinuous 
functions are not in L2, the exponential convergence of 
truncated Gegenbauer series can be proved, and the rate 
of convergence can be estimated. parameters 

When the FG method is applied to the solution of a 
boundary-value problem with a modified Helmholtz oper- 
ator, an intermediate solution may have steep profiles near 
the boundaries. These steep regions introduce a large er- 
ror into the final solution, wich has (presumably) a smooth 
profile. A method which compensates for this loss of accu- 
racy by using appropriately constructed boundary Green's 
functions. is proposed. 
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Fourier spectral methods, dealing with the approximation 
of functions by trigonometric series, are highly efficient 
for the solution of differential equations, for the following 
reasons: first, the differential operators are represented in 
the transform space by diagonal matrices, therefore decou- 
pling harmonics with different wave numbers. Then, the 
pseudo-spectral Fourier method is compatible with a fast 
transform (FFT) on an regularly spaced grid. Finally, for 
time-dependent problems the use of a uniform spatial grid 
permits larger stability bounds on the time step than in 
polynomial methods(J5]). 

It is known, however, that trigonometric series converge 
exponentially fast only for analytic and periodic functions. 
For non-periodic functions, having a discontinuous peri- 
odic extension, Fourier series do not converge uniformly in 
the interval. Away from the boundaries the rate of con- 
vergence is O(1/N), while near the boundaries oscillations 
of order O(1), which do not decrease with N, appear (the 
Gibbs phenomenon) . 

The Fourier method can be successfully used, however, 
for the solution of non-periodic problems if the functions 
are preliminary smoothed. In [2] the trigonometric basis 
was employed along with a smoothing procedure, u•ing an 
appropriately constructed bell function. However. such a 
smoothing procedure requires the knowledge of the func- 
tion on an extended domain, which is not possible in case 
of non-periodicity. 

In [6, 4] it was shown that the first Fourier coefficients 
](k), Ikl _• N of an analytic but not periodic function 
f(x),x • [-1, 1] contain enough information to construct 
a spectrally accurate approximation to this function by a 
Gegenbauer expansion. This expansion is spectrally accu- 
rate on the whole interval, including the point of disconti- 
nuity itself (x = :t:1). It was proven that if the number of 
terms and the parameter A of the Gegenbauer polynomials 
Cl•(X) are proportional to the number of Fourier modes, 
then this series converges exponentially with N. 
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In the present paper we extend the Fourier-Gegenbauer 
(FG) method of [6, 4] to evaluate, within spectral accu- 
racy, the derivatives of an analytic but non-periodic func- 
tion. The convergence of truncated Gegenbauer series with 
N is not ensured automatically for the derivatives, since 
the Fourier series for the derivatives are not necessarily 
bounded. which is •Ve will demonstrate in this paper that 
there exists a parametric region where Gegenbauer series 
for the derivatives converge exponentially. 

The application of the FG method to the solution 
of differential equations, in particular, to the modified 
Helmholtz equation 

(1) u"-/•2u = -/•2f(x), x • [a,b] 

which is frequently used in CFD applications, faces ad- 
ditional difficulties. For t• >> 1, a particular solution, 
which is obtained in an intermediate step of the numer- 
ical method, has a large gradient near the boundaries. 
This gradient cannot be resolved accurately by the present 
method. Thus, a large error is introduced into the final so- 
lution, even if it is smooth and does not contain boundary 
layers. X• propose a correction procedure, using appro- 
priately constructed homogeneous solutions, in order to 
recover the spectral accuracy. 

The outline of this paper is as follows: in section 2 we set 
up the stage for the rest of the paper with a brief descrip- 
tion and notations for the Fourier-Gegenbauer method. In 
section 3, estimates for the accuracy of Gegenbauer inte- 
gration and differentiation are given. In the next section, a 
method for improving the convergence of the FG method, 
based on successive smoothings of the original function, is 
described. Finally, in section 5 we apply the FG method 
to the solution of non-periodic boundary-value problems 
while preserving the spectral accuracy. 

2 The 

method 
Fourier-Gegenbauer 

In this section we briefly describe the Fourier-Gegenbauer 
method of [6, 4]. Consider an analytic but not periodic 
function f(x) defined in [-1, 1]. Such a function has dis- 
continuities at the boundaries x - :t:1 if it is extended 

periodically with period 2. The Fourier coefficients of f(x) 
are defined by 

f(x)e-ilc•rXdx (2) 7(I) = 
Assume that the first 2N + 1 Fourier coefficients ](k) are 
given. Our objective is to recover the function f(x) on 

x • [-1,1] with exponential accuracy in the maximum 
norm. 

The truncated Fourier series for a discontinuous function 

N 

(s) fN(x) = 
k=-N 

converges slowly, like O(•), inside the interval and ex- 
hibits O(1) spurious oscillations near the boundaries x - 
:i:1 known as Gibbs phenomenon. Thus there is no con- 
vergence in the maximum norm. 

The basic approach of [4] consists of reexpanding Eq. 
(3) into rapidly convergent Gegenbauer series 

(4) f(x) = 
1=0 

where C'/•(•) is the two-parametric family of the Gegen- 
bauer polynomials (l is the order of the polynomial, • is a 
parameter. The formula for computation of the polynomi- 
als C/•(•) can be found in [1], page 782). 

The Gegenbauer coefficients are defined by 

i (1 - (s) 
where 

(6) h• = rr«Ct•(1) F(X+ 1/2) 
r(x)(t + x) 

As we do not know the function f(x), but rather its trun- 
cated Fourier series Eq. (3), we have only an approxima- 
tion to ]'x(1) which we denote by 

-- (1 - x2) 'x-« fs'(x)Cfi(x)dx. (7) 
It is a remarkable fact that the approximate Gegenbauer 

coefficients • (1) can be explicitly expressed in terms of the 
Fourier coefficients •(k) m follows: 

(8) = + 

0(1•1• 

where F(A) and J•(x) •e the Gamma and the Bessel func- 
tions. The corresponding Gegenbauer expansion, b•ed on 
the approximate coe•cients g• (l) will be then: 

M 
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We shall refer to Eqs. (9, 9) as the Fourier-Gegenbauer 
(FG) approximation of f(x). The transformation from 
f (x) to õ• (l) will be denoted 6. 

The difference between the Gegenbauer partial sum with 
21! terms of the function f(x) 

M 

(10) f•l(x) = 
/=0 

and that of the truncated Fourier series fN (x) is called the 
truncation error:. 

TE(x,f,A,M,N) 

(11) : • (iX(l)- •O•v(1))CtX(x) 
/=0 

It measures the error in the finite Gegenbauer expansion 
due to the truncation of the Fourier series. This error 

decays exponentially with N provided that both A and M 
are proportional to (but less than) N. For example, the 
relations M = A = N/4 can guarantee such a decay. 
The total error of the FG approximation 

E(x,f,A,M,N) =1 f(x)- f•.N(X) l 

can be split into two components as follows: 

E(x,f,•,M,N) If(x) f•l(x) + f•(x) = - - fh.N(X) l 

<_ I/(x)-L•(x)l+ 
(12) I f,•(x) - f•l,N(•) I ß 

The second component is the truncation error (11). The 
first component 

• M 

s•(•,L•,•,N) = •]•(t)c)(•)- 
/=0 /=0 

arises due to truncation of the Gegenbauer series. It is 
called the regula•zation error. 

3 Convergence of the Fourier- 
Gegenbauer series for deriva- 
tives and integrals 

Our purpose is to construct a spectrally accurate approx- 
imation to the derivatives (integrals) of an analytic and 
not periodic function f(x). As in the case of interpolation, 
we are given only the first 2N + 1 Fourier coefficients f(k) 
defined in Eq. (2). Knowing f(k), we can represent the 

derivatives (integrals) of the function f(x) in the spectral 
space. For the r-th derivative f(r)(x), r = 1, 2, ..., we have: 

(13) L(k) -- (i•rk)r f(k), Ikl _• N 

and, similarly, for the integral I(x) - f_• f(t)dt: 

](k> Ikl _• N. (14) i(k) =- i•'k' 
A "natural" way to construct an approximation to the 
derivatives or to the integral is to implement the FG algo- 
rithm, using the coefficients (1 3) or (14) instead of ](k) in 
Eq. (9). 

We consider first the case of the derivatives. The Fourier 

partial sum for the rth derivative of a function f(x) is 
defined by: 

N 

(15) 

The Gegenbauer coefficients for f(" and ff) are given 
respectively by: 

(16) f•(1) 

gN.•(I) (17) •X 

= h• 1 (1 - x•) -• f(•)(x)C•(x)dx 
1 // 1 t(r) = -- (1- •)•-• (x)C)(x)• •N 

h• • 

where ht • is defined in (6). Then the FG approximation 
to the rth derivative of f(x) will be: 

M 

(lS) '•(•) (1)CtX(x) 
1=0 

(note that f(r) rx• depends also on A). M.N\ ! 

An estimate of the truncation error of this approxilna- 
tion is given by the following lemma: 

Lemma 3.1 Given a function f(x) in L2(-1, 1), there ex- 
ists a constant • independent of A,M,N such that the 
truncation error in the FG expansion of the r-th deriva- 
tive of f(x) satisfies the following estimate: 

(19)TE(x, f(•), A,M, N) < ,•q)•(M, A)(•-•) x-•-• 

We start with the case r = 1. We shall prove Lemma 
3.1 for this case and show the generalization to r > 1. 
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Proof Using the definitions (16), (17) of the Gegen- 
bauer coefficients for f'(x) and f•v(x) (r = 1), the def- 
inition (11) of the truncation error, and the equality 
max-•<x<• I C•(x) I = C/•(1) (see [3], page 206) we have: 

TE(x, f', ,•, M, N) _< 

(20) M max max I(]•(/) A• I -- gNA(l)) 
O<_l_<3d -l<x<l 

< M max 
-- 0</<M h• 

I/f• (f'(x) - f;v(x))C•(x)(1- x•)•-•/2dx 
We have to find now a bound for the integral ß 

/: (21) z, = (f'(x)- f•,(x))C)(x)(1 - :?)•-•/•x 
1 

It is convenient to introduce the following notations: 

TN(X) = f(x)-- fN(x) 
N(X) (•)-- fN(•) 

1 

.•(x) = C)(x)(1-x2)X-• 

H¾(x) = (1 - x2)•-•(/+ 2A- 1)(-xC•(x)+ 
(in the last expression we used the differential relation for 
C•(x)- see [1], page 783). 

Replacing the relevant terms in Eq. (21) and performing 
integration by parts, we obtain: 

• = r;.(x).•(•.)ax 
1 

(22) = [r•.(z).•(x)]•_• - rN(X)**7(x)ax 
1 

The first component vanishes because Wt(x) is zero at the 
end points •1. Substituting the expression from Eq. (22) 
and using the folloxving relation for the Gegenbauer poly- 
nomials 

• + • c)•(x) (2•) xC)(x)- ck•(x)- 2(x- •) 
(it can be derived after some manipulations with the r• 
cursion formul• in [1], page 782) we have: 

• = r;(•)W(x)ax 
1 

- •(t,x) r•(x)(• (x)ax -- -- x .1 
1 

where 

(24) •(1, A)= (l + 2A- 1)(/+ 1) 
2(•- 1) 

Combining (21), (21) and (24), we obtain: 

TE(x, ?, •, M, N) < 

M max •(/,A) © 
o_•t_•M h• 

f•TN(x)C•(x)(1- x •) -2dx] 
At this point we substitute the expression 

(•) •(• = •(•_ •(•) = • 

into (25), and using the relation 

-- •'•C•(x)(• - x•)•-• = 

(•c) r(x)i•(• + ,)7•+.(•)(•)• 
(see [3], page 178) together with the boundedness of the 
Fourier coefficients of f (x) (f (x) • L•[- 1, 1]). 

(•?) •](•)• • • 

we are left with the following estimate: 

TE(x,f•,A,M,N) • 

MA max •(l,A) h• F(A- 1)(/+ •) 
0•t•M 

c•(1) • • 
•>• 

Since [ J•(x) [• I for all x and y • 0, we obtain, after 
some algebra: 

(28) TE(x,f•,A,M,N) • 

• m• •1(/ A)• (•).•-• O•l•M 

where 

(2o) 
r(x) (t + x) r(t + 

(I,•(t, x)= 2 r(2x) 
Here we also used the notation .• = MA, Eq. (6) for ht x 
and the relation 

r(t + 2X) (30) C)(1) = 
t!r(2•x) 
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(see [3], page 206). 
It is easily seen that •l (l, A) is an increasing function of 

I. Thus, we have: 

Ikl>N 

(31) < •i•l(M,A) ;N 
The truncation error for this case is O(•---•) [] 

We have found that the estimate (31) is valid for the FG 
expansion of the first derivative of f(z). 

The truncation error for the approximation of f(r)(z) is 
given by: 

1 

= r?•)(•)•(•) _• - • (•)u•/(•)• 

where T•-•)(z) is the truncation error for the approxima- 
tion of the (r- 1)th derivative. The integration by parts 
can be repeated r - 1 times, 
yielding: 

1 

/: (32) = (-1) r , T•¾(x)U•(•)(x)dx 
since the expressions in brackets vanish at the end points 
ifA > r. 

It can be shown that: 

(33) **5(*>(x) = (1-•2)x-•-*ox-*rx• •t •) 
H;:• [(• + p)(• + 2• - p)] (a4) •,(t,x) = 

(for s = 1 it coincides with • of Eq. (24)). 
Substituting Eq. (34) into Eq. (32), using again the 

bound Eq. (27), and combining Eqs. (26), (6) and (30), 
we have finally: 

TE(x, f(O, A, M, N) • 

• m• •(t,x) c)(•) 
0<t<M h• 

2 )i-1 
Ikl>N 

< •i•(M,X) 7N 
where 

(35) •,t,x) = 2 • r(x) (t + x) r(/+ 
r(2x) 

(compare with Eq. (29) for r = 1). Therefore for the 
rth derivative the truncation error-will be of the order 

o( • N--X-Z-•T). [] 
A similar proof applies for the case of the integration, 

(which is a simpler one, since I(x) is in L2[-1, 1]). For the 
integral of f(x), the truncation error TE(x, I, •, M, N) is 
of order O(•-r). Likewise, successive integrations can be 
performed on the Fourier coefficients, gaining a power of 
1IN at each integration in the bound for the truncation 
error. 

Following the demonstration of [4] it can be shown that 
the truncation error in the approximation of the derivatives 
and integrals of f(x) becomes exponentially small when 
there is a linear relation between M, A and N. 

The results are shown in Figs. 1 and 2 for the function 
f(x) =x • . 
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Gegenbauer lnterpolation of u-x**3, exac• coeff:clents 

.. 

2nd der;vatlve 

integra! 

• 12 I .o'.. .o'.. .o., o o. o., oi, 

Figure 1: Effect of differentiation and integration on the 
pointwise error for Gegenbauer interpolation 

The accuracy of the FG approximation increases with N. 
For fixed N, the error increases with the number of deriva- 
tions: we obtain a larger error for the second derivative 
than for the first derivative, which itself is less accurate 
than the interpolation. Integration is more accurate than 
interpolation. This is in agreement with the theoretical 
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5 Helmholtz equation 

We now consider the solution of differential equations by 
the FG method. We illustrate our approach on a second- 
order equation: 

u• - lffu = -Ifil(x) -1<x_<1 
u(-1) = B1 

(37) u(1) = B2 

where f(x) is a continuous non-periodic function in the 
domain [-1, 1] . We assume that the solution is not de- 
pendent on/•. This assumption is accurate for the equa- 
tions arising from the implicit time discretization of a time- 
dependent CFD problem ( in this case the parameter/• is 
related to the time step r as/• cx 1/x/• ). 

The numerical solution process consists of two steps. In 
the first step we apply the Fourier transform to the Eq.(37) 
and integrate in the Fourier space, to obtain the coefficients 

(38) a(k) = 
+ 

Replacing the Fourier coefficients ](k) in the FG algo- 
rithm (7)-(9) by the coefficients (38) we obtain a particular 
solution up(x) in the physical space . 

M 

(39) 11•I.N(X ) = • f, XN(l)C•(x ) 
1=0 

where the coefficients 6•,(I) are the FG coefficients for 
up(x). We define as well fi•(/), the Gegenbauer coefficients 
for ur(x ). 

It can be easily shown that the truncation error up(x) 
satisfies the following estimate: 

(40) TE(up,,X, rn, N) < .•q)(m,A)(•-•) •+• 
where (I)(M, ,•) = (M+A)F(M+2A)F(A) (M-1)!F(2A) and .• is a constant. It 
can be made exponentially small for large N and by choos- 
ing the parameters M, A accordingly. Details are given in 
Appendix A. 

The particular solution thus constructed tends to 0 near 
the boundaries x = +1 in accordance with an asymptotic 
behavior of the Fourier coefficients •(k) ,,• f(k)/k 2 ,,• i/k s 
at k >> 1, which is typical of C x- continuous functions 
(Gottlieb and Orszag, [7] ). Therefore it does not necessar- 
ily satisfy the boundary conditions (37). For example, the 

1 
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0.2 

0 

-0.4 

/- 

-1 I 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

x 

Figure 3: The particular solution up(x) at A = 5 (solid 
line) and the exact solution u•(x) (dashed line) 

profile up(x) is shown in Fig. 1 in the case f(x) = x. A = 5 
(solid line); the dashed line corresponds to the exact solu- 
tion u•(x) = x. 

The purpose of the second step is to correct the particu- 
lar solution obtained so that it satisfies the given boundary 
conditions. This can be done by adding two linearly inde- 
pendent homogeneous solutions as follows: 

(41) u(x) = up(x) + D•e -"• + D•e"*" 

D1 and D2 being uniquely determined by the boundary 
conditions B1 and B2. 

Equation (37) was solved for the case u(x) = x •. with 
N = 64, m = I = 16. Two cases were implemented ß the 
spectral case (Fourier coefficients are computed exactly) 
and the pseudospectral case, where they are computed by 
a FFT procedure. In both cases a linear combination of the 
exact homogeneous functions e +•'x was added to the par- 
ticular solution, in order to enforce boundary conditions. 
The logarithm of the error for/• = i , is sho•vn in Figs. 
4 and 5, for the spectral case. The FG series converges 
pointwise with exponential accuracy. Results for several 
values of/• are summarized in Table 2. The logarithm of 
the maximum error norm is shown for the spectral and 
pseudospectral Gegenbauer procedure , and compared to 
the spectral and pseudospectral Fourier expansion. 

We can see that for small •'s the Gegenbauer expansion 
recovers the accuracy lost in the Fourier expansion, both in 
the spectral and pseudospectral case. However, for 20 <_ 
/• _< 60 the spectral accuracy deteriorates, to the extent 
that in this parameter interval the Fourier expansion gives 
better results than the FG expansion. The reason for this 
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Fourief-Gegenbauer solution of aelrahol•z eq. for u=x..3 
-2 

-4 

o10 -12 

-14 

-16 

-1 -0,8 -0,6 -0.4 -0,2 0 0,2 0.4 0,6 0.8 
X 

Figure 4: Pointwise error in F-G solution of Helmholtz 
equation. spectral case 

• Spectral Pseudospectral 
Gegenbauer Fourier Gegenbauer Fourier 

I -13.066 -4.840 -12.925 -3.969 

5 -5.930 -4.260 -5.930 -3.413 

10 -2.889 -3.567 -2.888 -2.750 

20 -1.386 -2.946 -1.383 -2.191 

40 -1.874 -2.347 -1.861 -1.708 

60 -3.057 -2.006 -3.026 -1.478 

80 -4:228 -1.773 -4.176 -1.350 

Table 2: Log II u - Uex for u" = f, x 3 

behavior is the presence of exponential components e -•'x 
and e •x in the particular solution up(x) obtained from the 
procedure . For large •z's the profile Up(X) coincides with 
the line u(x) = x inside the interval, except for two thin 
regions near the boundary, where it abruptly decays to 
zero. 

The operator G interpolates well the smooth part of the 
particular solution, but cannot obtain a high accuracy in 
the interpolation of the steep exponential functions. This 
is shown in Fig. 6. 

The previous observation gives us the means to compen- 
sate exactly for the numerical error which arises due to 
the boundary layers. Instead of using the exact functions 
e ñ•'x in the second step of the algorithm, we shall define 
as new homogeneous solutions the FG expansion of these 
functions, as follows: 

(42) uh• = •J-•(e ux) 
(43) ua2 = 6-•(e -•'•) 

and thus cancel the approximation error in the intermedi- 

Four•er-Geqenbauer solution of Hel•holtz eq. l[or 
, , 

I lu-uexl t -- 

- 14 •0 I 310 I I 415 I I I 15 2 25 35 40 50 55 60 65 
N 

Figure 5: Maximum error in F-G solution of Hehnholtz 
eqnation, spectral case 

ate step of the computation of Up(X). 

As shown in Table 3, we obtain then a good accuracy 
for every •z in the interval [1, 80] . 

• Spectral Pseudospectral 
Gegenbauer Gegenbauer 

1 -9.421 10.078 

5 -9.608 -10.212 

10 -9.854 -10.480 

20 -10.342 -10.970 

40 -10.913 -11.498 

60 -11.184 -11.835 

80 -11.362 -11.932 

Table 3: Log II •e• I1• for u"- tz2u = f, u = x 3, for ß 

approximated homogeneous solutions 

The approximation error for the Fourier-Gegenbauer so- 
lution of the Helmholtz equation stems from the large reg- 
ularization error RE(x, up, M, A, N) in the homogeneous 
components of the solution for large •z's. This error is 
shown in Fig. 7 as a function of 2N, the number of terms 
in the Fourier partial sum, and for several values of •z. We 
have chosen the same values for the parameters as in [4], 
namely, M = A = •. When the ratio r = • reaches 
some minimum value (meaning that the minimum number 
of terms per wave is satisfied ), we obtain an exponential 
convergence of the solution, as expected. 
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sinh(pz) Figure 6: Gegenbauer interpolation of sinh(•) for •t = 20 
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Figure 7: Resolution error E(•. •-, N, •) in maximum 
norm for different values of 

5.1 Recovering the accuracy 

In order to overcome the inaccuracy of the solution of 
Eq. (37) for large /z, for a L2 non-periodic function 
.f(x), it is useful to note that the partial sum us(x) = 
]•-•=-N •tkeik•z converges to a periodic function that we 
shall designate by us(x ). We propose here a method to 
recover the accuracy for large/z's, first for an antisymmet- 
ric function and then for a symmetric function. As every 
function f(x) can be written as the sum of a symmetric 
function and of an antisymmetric function , the following 
procedure is suitable for every f(x) 6 L2 and non-periodic. 

Antisymmetric case 

We consider the antisymmetric case where: 

uxx-la2u ' = f(x) -l_•x•_ 1 
(44) u(-1) = -u(1) 

where f(x) is a continuous antisymmetric function in the 
domain (-1, 1) . As explained before the particular solu- 
tion obtained by the spectral procedure would have (for 
large/z) a smooth component and a non-smooth exponen- 
tial component. If us(x ) designates such a particular solu- 
tion, it must be of the form: 

(45) us(x ) = us(x)-Us(1) sinh(px) 
sinh(p) 

since us(1 ) = 0. It can be assumed that the homogeneous 
solution will be in this case a combination of antisymmetric 
functions, hence the sinh(/zx) instead of e m"•. However, 
the solution obtained from the Gegenbauer procedure is 
6-•(ug(1)) and not (us(1)). As 6-1(rig(i)) • 0 we do not 
have an equality but' 

(46) 6-1(ug(1)) • 6-1(Us(1))[1-ut•(1)] 
sinh(•x) where ua•(x): G-l(sinh(g) ) ' 

Therefore we obtain the following approximation for 
u,(1) ' 

6-•(us(1)) 
(47) u.(1) • 

[1- ua•(1)] 

so that we can compute an approximation to u•(x) by Eq. 
(45). 

We expect this approximation to be accurate for large 
ft as it cancels the inaccuracy present in the Gegenbauer 
representation of •in•(•) For small •'s (• < 10 ) •his sinh/z 
procedure becomes inaccurate. 

Symmetric case 

The symmetric case is very similar; f(x) is a continuous, 
symmetric function in the domain (-1, 1), and we expect 
that: 

(48) us(x ) = us(x)-u•(1) pcøsh(px) 
sinh(p) 

Designating by v(x) the first derivative of u(x), which is 
antisymmetric, we obtain: 

(49) . . sinh (•ux) 
vs(x ) - v•(x)- vs(1) sinh(•) 
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and an estimate to vs(1) can be found as follows: 

(50) Vs(1) 
[1 - tuh2(1)] 

cosh(•x) • where uh2(x) = •-1(Ltsinll(ltl) ] . Us(X ) is obtained by inte- 
gration of v,(x). 

solution of Helmholtz ,exact coefficients 
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Figure 8: Comparison of the accuracy of two different so- 
lutions. NBCOR: correction procedure. EXHOM :exact 
homogeneous functions and boundary conditions 
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Figure 9: Comparison of the accuracy of two different so- 
lutions . CONBCOR ß subtraction +correction procedure. 
COEXHOM: subtraction + exact homogeneous functions 
and boundary conditions 

Results 

The correction procedure described above was applied to 
the same test problem as in section 4: u(x) = x •,N = 

64, M = A = 16. The comparison between the two meth- 
ods (the solution procedure with exact boundary condi- 
tions and exact homogeneous solution on one hand, and 
the correction procedure on the other hand) is shown in 
Fig. 8 . For the latter procedure, the accuracy for small 
/Ys is poor, but improves quickly and an accuracy of 10 -lø 
is achieved for /• k 20 . For the former procedure the 
situation reverses itself: accurate results are obtained for 

small/Ys, and accuracy degradates when • increases. 
The same comparison was repeated for the same problem 

with smoothed right hand side (Cø-continuity ensured by 
subtracting a first-order polynomial from the right hand 
side). As before the first solution strategy yields spec- 
tral accuracy for /• _• 5, then the accuracy deteriorates 
while the accuracy of the correction procedure improves. 
Due to the higher smoothness of the periodic extension of 
the f(x), the correction procedure achieves an accuracy of 
10 -12 in the maximum norm. However, qualitatively the 
results of the two tests are similar (Fig. 9). 

It is therefore possible to combine the two methods, 
choosing the correction procedure or the FG method with 
prescribed boundary conditions, according to the value of 
/•. Although the accuracy at the intersection point, in the 
examples shown here, is only of 10 -•, a better accuracy 
can be obtained by successive subtractions of polynomials. 
For example, If one has to work in the region 5 •_ # •_ 10, it 
is advisable to work with the cubic subtraction procedure, 
in order to ensure a good accuracy. 

Results for the solution of the symmetric case u(x) -- 3z 4 
are comparable to the CO-continuity case. When solving a 
problem with an arbitrary right hand side (f(x) = xS+x4), 
we obtain the worst-case accuracy, e.g. the same accuracy 

-12 I 
0 90 100 

F-G solution of Helmholtz by correction,exact coefflcients 
, , , , , , , , 

f(x)•x**3 -- 
f{x)-x''4 .... 

• f{x)=xe*3*X'*4 

. 

-.. 

10 2; 310 4• 510 60 70 610 
mu 

Figure 10: Accuracy of the correction method for antisym- 
metric, symmetric and arbitrary r.h.s 



Solution Of Non-Periodic PDE's By Gegenbauer Expansions 149 

as for u(x) = x a (Fig. 10). 
Finally, the same tests were performed for the pseu- 

dospectral method. The exact Fourier coefficients of the 
Galerkin formulation were replaced by Fourier coefficients 
obtained from a standard FFT procedure. The procedure 
was found to be very sensitive to the accuracy to which 
these coefficients are computed. Very poor results were 
obtained for the correction method, and the computation 
of the coefficients by a high-order Romberg procedure was 
needed in order to achieve a high accuracy. However, the 
Romberg procedure adds few calculations to the process, 
and the FFT method plus the extra computation for the 
Romberg method still are efficient enough for our purpose. 

-3.0 • t I I i I 0 4 50 60 70 80 90 100 

FG solution of Helmholtz equation by correction 

exact Fourier coeffs -- 
discrete Fourier coeff by Romberg int.. 

I I 3i0 3. O 2O 

Figure 11: Comparison of the accuracy of the correction 
method, for exact and discrete Fourier coefficients 

Results are shown in Fig. 11. 

6 Conclusion 

The Fourier-Gegenbauer method was adapted to the solu- 
tion of Helmholtz like equations in non-periodic domains. 
This method can be helpful in the multidomain solution of 
CFD problems, since a good accuracy can be recovered (af- 
ter a suitable adaptation to improve the approximation of 
the homogeneous components). No overlapping is needed 
between the subdomains, thus saving computation time 
and storage space. However, for oscillatory functions, the 
resolution requirements of the Gegenbauer expansion are 
more stringent than for Chebyshev or Fourier expansions, 
and therefore more collocation points per wave are needed 
when resolving steep gradients. The method becomes then 
less efficient. Future directions of research in this topic 
should be based on the combination of Fourier-Gegenbauer 

method with other spectral methods, as Chebyshev or 
Fourier methods. 

Convergence estimates for the solution of Helmholtz 
equation, derivatives and integrals were investigated for 
the first time. The numerical results seem to match the 

expectations. It becomes therefore possible to use the 
Fourier coefficients of non-periodic functions to reconstruct 
its derivatives with a spectral accuracy. This was not pos- 
sible in the classical Fourier spectral methods. 

A Truncation error for the partic- 
ular solution 

We are interested in evaluating the truncation error in 
the Gegenbauer expansion for a particular solution of Eq. 
(37). 

Lemma A.1 Given the equation u"-iffu = f(x), ill(x) 
is a L • function on [-1, 1] , and up(x) is a solution of the 
equation such that it has a continuous periodic extension, 
there exists a constant .• independent of,k, M, N such that 
the truncation error for Up(X) satisfies the following esti- 
mate: 

2 (51) TE(x,up, A,M,N) 
where (I)(M, A) = (M+•)r(•l+•)r(•) (M- •)!r(2,x) 

Proof In the definition of the truncation error, we replace 
f by u to obtain: 

(52) 

TE(x, Up, A, M, N) _• 
A,I max max 

O _• l _• M -l_•x_•l 

I (fi'x(!)- 

<_M max 
O</<M h/A 

f(x) is a L 2 function, which gives ß 

(53) <_ A k = N,N+ 1, N+ 2... 

It follows that up(x) • L2[-1, 1], since it was obtained by 
successive integrations of f(x). Replacing f(k) by ft(k) we 
obtain: 

p2A 
(54) I < 
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•A 
(55) k2 

(56) _• N• 
Note that the last bound is valid only for tz < N. 

As in Paragraph 2, we can combine the equations (25) 
(26) and (30) and obtain the following bound for the trun- 
cation error of up: 

where (I)(M, A) = (M+x)r(.•+2x)r(x) which can be made (M- 1)!F(2)•) 

exponentially sinall for large N and by choosing the pa- 
rameters M, A accordingly. 
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