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Abstract 

Nonsmooth solutions of hyperbolic systems are computed 
by a modified Fourier-Galerkin method. The described 
approach is seen to give substantially improved accuracy 
compared to more traditional methods. Discontinuities are 
accurately resolved already on coarse grids, and the fine- 
structure of structured solutions is resolved on relatively 
coarse grids as well. The accuracy is seen to be of high 
order. and even for very long term integrations the global 
error can be kept very small if the grid is sufficiently re- 
fined. 
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I Introduction 

As is well known [4], spectral projections of discontinuous 
functions exhibit global oscillations which are particularly 
strong near the discontinuities. This is known as the Gibbs 
phenomenon. and the reduced accuracy of spectral approx- 
imations due to this oscillatory behavior, makes it neces- 
sary to modify traditional spectral methods. In particu- 
lar. for solutions of hyperbolic problems containing shock 
discontinuities, the literature most often suggests modifi- 
cations by application of various filtering techniques. It 
has been shoxvn that the computations may be stabilized 
by such techniques, and that high order accuracy may be 
recovered - at least away from the discontinuities. 

For initial value problems for linear hyperbolic equa- 
tions with discontinuous initial data, Majda et al. [16] 
proposed a modification of the Fourier collocation method 
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which incorporated smoothing filters applied to the initial 
data and to the spatial differential operator. For nonlin- 
ear hyperbolic equations further difficulties are connected 
with the fact that the nonlinearities may lead to forma- 
tion of shock discontinuities even when the initial data 

are smooth. Tadmot [18], [19] proved that it is possible 
to maintain stable spectral approximations while retain- 
ing spectral accuracy for nonlinear conservation laws, by 
application of his Spectral Viscosity method with appro- 
priate use of post-processing filters. 

In this paper we are concerned with the application 
of the modified Fourier method presented in [9] and fur- 
ther developed in [10]. The method is designed for study- 
ing nonsmooth solutions of well-posed initial value prob- 
lems for systems of hyperbolic equations, and is a shock- 
capturing method where generalized step-functions are 
utilized in the spectral scheme as well as in the post- 
processing of the numerical solutions. The idea of intro- 
ducing step-functions in the reconstruction of discontinu- 
ous functions was initiated by Gottlieb et al. [14], and has 
been further developed in [1], [2], [3], [7], [8], [9], [10], and 
[12]. 

The generalized step-functions utilized in the reconstruc- 
tion of discontinuous 2•r-periodic functions from truncated 
Fourier series expansions in [9], [10] were introduced in [8], 
and were denoted by U•(•), n = 0, 1,2,.... On the interval 
0 _< • < 2•r, the family of 2•r-periodic functions U•(•) is 
given by 

(1) V•(•) = (n + 1)• B•+• ' 
where Bj(x), j = 1,2,... are the Bernoulli polynomials 
[11]. The function Un(•) is of finite regularity for each 
n = 1,2,..., with derivatives Un(P)(•)= Un-p(•)continu- 
ous everywhere for p - 0,..., n- 1, but with L• •)(•) = 
U0(•) only piecewise continuous with jump-discontinuities 
of magnitude +1 at • = 2ra•r, m = 0,4-1, 4-2,.... In 
fact, U0(•) is a saw-tooth function, which on the interval 
(-2•r, 2•r) is given by 

• (-,n--•) if -2•-<•<0 (2) v0() = 
z (•--() if 0<(<2•-. 
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There are no jumps at the singularit), locations for the 
higher order derivatives U? ) (•), p >_ n + 1. The Fourier 
coefficients for the functions U•(•), n = O, 1, 2,... are given 
by 

(3) (v•)0 = 0, (u•)k = 2•(ik)n+• ; k # 0. 

2 Linear hyperbolic problems 

In this section we shall consider numerical solutions of pe- 
riodic initial value problems for linear hyperbolic systems 
of the form 

0u 

0--• +Lu = 0, 
0 

subject to nonsmooth initial data u(x, 0) = u0(x). Here, 
u = {u• ..... u,•} T denote the dependent variables, and 
A. B are given m x rn matrices with smooth coefficients 
which are 2•r-periodic with respect to x. •Ve restrict our- 
selves to studying solutions u(x,t) of (4) which for each 
t are piecewise smooth on [0, 2•r] and 2•r-periodic with re- 
spect to x. 

Following [8]. u(x. t) may for each t > 0, for an arbitrar- 
ily given integer Q > 0 and for some finite integer _R be 
written 

where 

u(•. t) = uO(•,t) + v(•,t), 

(2 R 

(6) V(x. t) = •y]ay(t)U,•(z-z•(t)). 
n=0 j=l 

Here. x : x•(t), j - 1,...,_R, denote the characteristic 
curves associated with (4) across which the solution it- 
self and/or some (or all) of its spatial derivatives suffer 
jump-discontinuities. Each of these characteristic curves 
is passing through one of the initial singularity locations 
at t: 0. In (5) a](t) denotes the jump in the nth spatial 
derivative of u across x = xj (t) at the time t, and for each 
t the function uC2(x, t) is 2vr-periodic and at least Q times 
continuously differentiable everywhere with respect to x. 

For any given even integer N > 0 and at each instant 
t >_ 0, we may. to a piecewise smooth solution u(x, t) of 
(4). associate a truncated Fourier series 

3f/2-1 

(7) P•u(•, •): • ri•(t)• •k•, 
k=-N/2+l 

where 

1 •0 2rr (s) rib(t) = • u(x, t)•-•&. 

Substituting (5)into (8), we get in view of (3) that rio(t) - 
(uQ)0(t) and 

• Q R •(t)e-i•x•(t) (9) rib(t) = (u•)•(t)+ • • • 
•=0 j=• 2•r(ik)'•+• 

,•#0. 

For N sufficiently large, approximate singularity loca- 
tions and jumps can be computed from P•u(z, t) by the 
reconstruction algorithm described in [8]. Alternatively 
[5], [10], these quantities may be determined by integrat- 
ing respectively, the characteristic equations and the trans- 
port equations associated with (4). When, in addition to 
P•vu(z,t), the singularity locations zi(t) and the corre- 
sponding jumps ay(t) occurring in (5), (9) are known for 
each t, P.¾u•(z,t) can clearly be determined from (9). 
Hence u(z, t) may be approximately reconstructed on the 
form (5)with uQ(x,t) replaced by P•uQ(x,t). It follows 
from [8] that for each t the reconstructed solution is glob- 
ally O(N -(Q+I)) accurate. 

In view of the above considerations, it is reasonable to 
seek numerical solutions of (4) which accurately approx- 
imate PNu(x,t) in Fourier space, even though P. vu(x,t) 
by itself may not provide an accurate approximation for 
the exact solution in physical space. This is the philoso- 
phy set forth in the modified Fourier method described in 
[9], [10], which can be summarized as follows: In (4) the 
matrices A(x,t) and B(x,t) with smooth coefficients are 
approximated by PxA(x,t) and P•vB(x,t). i.e. 

then has a trigonometric polynomial solution 

3[/2--1 

(12) u•½,t) = • •(t)• •, 
k=-N/2+l 

which constitutes an accurate numerical approximation to 
PNu(x, t). When accurate information about the solution 
is needed, UN(X, t) is post-processed by reconstruction to 
the form (5). 

In cases where the coefficients A,/• m'e independent of 
x, we have 

(13) P•[L•vu2•¾_2] = Lu.¾. 
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The problem (11) is, therefore, in this case readily seen 
to be equivalent to the problem resulting from application 
of the ordinary Fourier-Galerkin method to (4) in SN = 
span{eik½ I - .55/2 + I _< k _< N/2- 1}. No numerical 
dispersion or diffusion is introduced through the spatial 
discretization in this case. 

If, on the other hand, A and B do depend on x, the 
solution u.¾ of (11) is formally seen to depend on the 
Fourier-Galerkin solution 112N_2(X , t) in S2N-2. To cir- 
cumvent this difficulty. the modified Fourier method advo- 
cated in [9], [10] approximates 112N_2(2 , t) at each instant 
t to the order O(155 -(O+1)) by de-truncating UN(X, t). This 
is achieved by putting 

(14)a•(t): Z Z 2•r(ik)n+l ' :55/2 _< Ikl <_ x- 2. 
n=03=l 

Here the approximate singularity locations xj(t) and the 
corresponding jumps ay(t) are calculated either from 
ux (x, t) by application of the reconstruction algorithm [8], 
or by the method of characteristics. 

The main feature of the modified method (11), (14) is 
that it reduces to a minimum the numerical dispersion 
and the numerical diffusion in the spectral approximation 
u.v (x'. t) of the nonsmooth solution u(x, t). As pointed out 
for the case of variable coefficients in [6], [9], the standard 
Fourier-Galerkin method for (4) introduces dispersive and 
diffusive effects by the way Lu is projected onto S.•-. This 
is expected to represent the major source of error for tra- 
ditional methods when dealing with nonsmooth solutions 
of (4). 

The de-truncation (14) may also formally be written 

(15) u2.v-2(x, t) = u Q (x,t) • P2•v-29(x, t) 

where •(x, t) is an approximation for V(x, t) in (5) and 
0 (x, t) is an approximation for •vuQ(x, t) determined H.V 

by 
(16) u•.(x, t) = ux(x, t)- PN•(x,t) 
In view of (15), it follows that (11) is formally approxi- 
mately equivalent to 

(17) Ot 
where G.¾ is the standard Fourier-Galerkin projection op- 
erator onto S.¾. Thus, the sources of numerical disper- 
sion and numerical diffusion stemming from the spatial 
discretization is, in the modified method, essentially lim- 
ited to the truncation error associated with L.v and to the 
discretization of L•vu Q. As a result, accurate approxima- 
tions for discontinuous solutions of (1) can be obtained on 
relatively coarse grids. 

3 Nonlinear conservation laws 

In this section we shall consider numerical solutions of peri- 
odic initial value problems for nonlinear conservation laws 
of the form 

(18) au oW + f(u) = o. 
Here, as in the preceding section, u = {Ul,..., u,•} r de- 
note the dependent variables. The given flux function 
f = {fl,..., f,•}r is assumed to be smooth with respect to 
u. We continue to restrict ourselves to studying solutions 
u(x,t) of (18) which for each t are piecewise smooth on 
[0, 2•r] and 2•r-periodic with respect to 

We shall in this section consider a modified Fourier 

method (partially discussed in [9]) for studying solutions of 
(18) containing shock discontinuities, adapting several of 
the features discussed in the previous section. The method 
is geared at handling the propagation of shock-solutions, 
but is not designed to accurately handle the process where 
shocks are actually formed. In the short time interval 
where a shock is formed in an area where the solution ear- 

lier was smooth, other methods may. therefore: be more 
appropriate [18], [19]. 

Thus. we shall consider the solution of (18) subject 
to initial data u(x. 0) = u0(x), where u0(x) is a 2•r- 
periodic discontinuous function which is piecewise smooth 
on [0, 2•r], and which corresponds to some weak entropy so- 
lution of (18). We restrict ourselves to studying solutions 
u(x, t) of (18) in some finite time interval t 6 [0, T] which 
is such that u(x, t) for each t is piecewise smooth on [0, 2•] 
and has no other shock discontinuities than those origi- 
nating from the initial ones. In this time interval, u(x. t) 
then has a representation of the form (5) for some integer 
R, and for each j = 1,..., R. x = xj(t) denote the curves 
across which u(x, t) suffer shock discontinuities. 

Since f(u) is assumed to be smooth with respect to u, 
it is clear that f(u(x,t)) is a piecewise smooth function 
with respect to x for each t, if u(x, t) is piecewise smooth 
for each t. The singularities for f(u(x,t)) are dearly lo- 
cated at the same points where u(x, t) is singular. Thus, 
a representation analogous to (5) is valid 

(19) f(u(x, t)) -- fc2(x, t) + W(x, t), 

where, as usual. fO(x, t) denotes the Q times continuously 
differentiable F:.•.rt; and W(x, t) denotes the singular part. 
We clearly have W(x, t) -- 0 if V(x,t) _= 0, but otherwise 
the relations between the smooth and the singular parts 
of f(u(x, t)) and u(x, t) are relatively complicated, in gen- 
eral. We shall, therefore, confine our discussion here to 
the important special case where each component of f(u) 
is a quadratic form with respect to u. i.e. fj(u) = u. Aju, 
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j = 1 ..... m, where Aj are given m x ra matrices. We then 
for j -- 1 ..... m have that 

L.(u(x, t)) = uQ(x,t). AuQ(,t) 

(20) 

Clearly. the first term on the right hand side in (20) can 
only contribute to the smooth part fQ(x, t) of f(u(x, t)). In 
general, however. the last three terms in (20) all contribute 
to both the smooth part fQ(x, t) and to the singular part 
W(x. t) of f(u(x, t)). 

In order to be able to calculate a numerical solution of 

(18) which accurately approximates Psru(x, t) in Fourier 
space, we again note that a trigonometric polynomial 
u.v(x.t) given by (12) and representing a shock-solution, 
may be accurately reconstructed as 

(21) vx(x, t)=u Q •r(x,t). 

Again, •r(x.t)is an approximation for V(x,t) determined 
by the reconstruction algorithm described in [8], and 
u • (x t) is given by (16). 

A numerical solution ux(x, t) of (18) which accurately 
approximates Pxu(x, t) in Fourier space may therefore [9] 
be calculated by solving the following initial value problem 

__ 0 au.,v -+- •-• [P.vf(viv)] = 0 
0): 

The spatial discretization of the nonlinear terms rele- 
vant for the semi-discrete formulation (22) is of particu- 
lar interest here. For quadratic nonlinear terms, we note 
that the projection of the first term on the right hand 
side in (20) may be accurately calculated by the standard 
Fourier-Galerkin projection in S5• of a product of smooth 
functions. The projections of the second and the third 
term on the right hand side in (20) correspond to the ap- 
proximate projections presented for the linear case (11), 
where an approximation for the product of a smooth func- 
tion and a singular function was handled by de-truncation. 
For the last term in (20), we note that a product of piece- 
wise polynomials is itself a piecewise polynomial. The last 
term is clearly a linear combination of products of the type 
Uk(x - ?)Uz(x - la), and if we let K = k + I and let 
be any two constants such that 7 • b, then the following 
relations can be shown to hold: 

(23) + ( { ) - 
j=l 

Here, U,•(•') is given by (1) also for n = -1, and the con- 
stant C•,•,•,u may readily be determined from (23). More- 
over, if • = b, (23) is valid when •-b and b-•, are 
replaced by 0 + and 0-, respectively. The Fourier coeffi- 
cients associated with the last term in (20) are therefore 
readily obtainable in view of (3). 

4 Linear numerical examples 

In this section, the performance of the method described 
in section 2 is demonstrated by applications to one test 
problem with constant coefficients and one with variable 
coefficients. For the cases considered, the Fourier coeffi- 

cients corresponding to the numerical solution u.v deter- 
mined by (11) are advanced in time by applying a (4)5 
order Runge-Kutta method with step size control due to 
Dormand and Prince [15]. The product terms treated by 
the de-truncation method are computed by employing 2N- 
point FFT. Bv Method I we shall refer to solutions with 
singularity locations and jumps determined by the char- 
acteristic equations and the transport equations, respec- 
tively, and by Method 2 we shall refer to solutions where 
the reconstruction algorithm is utilized instead. 

The first test case considered is the linear constant co- 

efficient problem 

(24) 

where 

= 

• u2 - 1 0 • 

•2 

0 O_<x<2 

1 2<x<2.5 

1+0.1sin[a-(z-2.5)] 2.5 <x <3.5 

1 3.5<x<4 

0 4<x<2•-, 

The solution of (24) is readily found to be given by 
1 

(26) u•(x,t) = •[g(x+t)+g(x-t)], 
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Figure 1: Computed solution of (24), N = 64, Q = 1. 

(27) t) = 1 . 5[g(x- t)- + 
Consequently. the singularities in g(x) are transported 
with half their initial strength along the characteristic 
curves x-t- c• and x+t- c2. Thus for t > 0 fixed, 
the solution normally will have 8 singularity locations on 
[0.2rr), with jump discontinuities in the derivatives at lo- 
cations distinct from the points where the solution itself 
is discontinuous. As pointed out in section 2, the numeri- 
cal solution u.v of (24), (25) obtained from (11) is for this 
case equivalent to the Fourier-Galerkin solution, and we 
actually have ux -- P. vu. 

The considered example (24), (25) is primarily intended 
as a demonstration of the accuracy of the reconstruction 
algorithm [8] for piecewise smooth solutions on the form 
(5) from knowledge of P,¾u. The reconstructed solution 
is plotted in Figure 1 and error results for Method 1 and 
Method 2 are presented in Figure 2, where straight lines 
are fitted to the error data by means of least square linear 
regression. 

As pointed out in section 2, we would expect the recon- 
structed solution to be O(N -(Q+z)) accurate, and since 
the solution in this case is seen to have no jump disconti- 
nuities in its second derivative, we would actually expect 
to do even better for Q = 1. For Method 1, these pre- 
sumptions are clearly confirmed by the results in Figure 
2 where the accuracy appears to be at least O(N -•) for 
Q = 0 and at least O(N -3) for Q = 1. As for Method 2, 
we note that no convergence is achieved with Q -- 0, i.e., 
when the discontinuities are the only singularity locations 
counted (R = 4). In this case the reconstruction algorithm 
is not accurate due to the presence of the discontinuities 
in the derivatives at locations distinct from the locations 

of the discontinuities in the function itself [8]. We note, 

0.1 

0.01 
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le-07 

1 e-08 

•=1.4 Method 1, O=0 o 
1 =1 ø Method 2: •= 0 Method 

o Method 2, Q=I= x 

........ =-,•..• .... x 

.... :'-'-: .............. 0_:_27'N**(-1.7). ...... . ....... 29•;•;•(:-41]• ..... • ......... 
-.. 

5.54'N**(-3.6) 

i i I • i i 

32 48 64 96 128144 

Figure 2: Maximum RMS-error in the two computed solu- 
tion components of (24). 

however, that Method 2 appeared to be O(N -•) accurate 
for the case Q - 0, R - 8, i.e. when all the singularity 
locations where counted as discontinuities. 

For the case Q = 1, we first note that the application of 
the reconstruction algorithm with 8 singularity locations 
requires 24 Fourier coefficients with positive wave num- 
bers. Method 2, therefore, does not apply for N = 32 
in this case. In order to reflect the asymptotic behavior 
of Method 2, the corresponding straight lines in Figure 2 
were fitted to the error data obtained for N = 128,144. 192 

where the last point is not included in the figure. From the 
obtained results, Method 2 appears to be at least O(N -3) 
accurate. 

As our next example, we consider the problem 

Ou Ou 

0'-• + a(x)•--•x : 0, u(x, 0): b(x), (28) 

where 

(29) b(x) = { 1 +0.1sin 4 (•.-•) 0 < x < 2 0 2<x<2•r 

and where 

1 0<x<2 (30) a(x)= l+c[(x-2)(x-4)] 2 2<x<4 

1 4_<x < 2•r. 

Here, c is a constant for which we have considered two 
different values: c = 0.1 and c = 0.2. The solution of (28) 
is given by 

• dr (31) u(x,t)= B(O(x)- t) where O(x)= a(r)' 
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Figure 3: Computed solution of (28), N = 64, c = 0.2 
INlethod 2) 

and where B(•) is the ¸(2•r)-periodic function which is 
such that B(O(z)) = b(z). Since a(x) is positive every- 
where, this constitutes a wave propagating to the right 
retaining essentially the form of b(x). For c > 0, how- 
ever. the solution is modified by a stretching in the interval 
2 < x < 4, where the amount of stretching is determined 
by the magnitude of c. The wave regains its original form 
after its trailing front has passed x = 4. When a(x) is 
replaced by Pxa(x), the exact solution (31) of (28) has for 
each t jump discontinuities at two distinct points in each 
period. while there are no jumps in its first three deriva- 
tives. In the computations we therefore let Q = 0. The 
time range for the computations corresponds to somewhat 
more than five time periods for the choice c -- 0.2. A plot of 
the computed solution after approximately five periods is 
shown in Figure 3. Figure 4 shows the error in the discon- 
tinuity location computed in Method 2, and corresponding 
to the leading front of the wave. 

From (30), a(x) is seen to be a continuously differen- 
tiable function which has jump discontinuities in its second 
derivative. Hence [4], the approximation by P•va is only 
O(.Y -2) accurate in L2(0, 2rr). Consequently we should, a 
priori, not expect the computed solution to be more accu- 
rate than that. In the implementation of Method 1 we have 
calculated the singularity locations from the characteristics 
corresponding to the exact a(x) and not to P•Ta(x), and 
the results shown in Figure 5 and Figure 6 for Method 1 
indicate the above expected accuracy. We note, however, 
that the effect of the oscillatory behavior of P•va(x) rela- 
tive to the exact values of a(x) is not accounted for by the 
above L 2 argument. x, Ve may, therefore, hope for a faster 
convergence than O(N -2) for Method 2. This is actually 
confirmed by the results shown in Figures 5 and 6. In view 
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Figure 4: Absolute error in computed discontinuity loca- 
tion, c = 0.2. 
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Figure 5: Calculated error for the computed solution of 
(28). 
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Figure 6: Calculated error for the computed solution of 
(28). 
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of these results, we may anticipate a similar improvement 
in accuracy for Method I if it is based on the characteris- 
tics corresponding to PNa(x). 

In order to avoid instabilities for Method 2 within the 

time range considered we had, in the computations, to dis- 
regard a few of the highest order Fourier coefficients in u•v 
when we applied the reconstruction algorithm for the de- 
truncation at each time step. This is done since the highest 
order modes were polluted with errors which presumably 
stemmed from the numerical dispersion resulting from the 
relatively slow convergence of P.¾a. An alternative way 
of stabilizing the computations is, presumably, to utilize 
some weak filtering. 

5 Nonlinear numerical examples 

As our first nonlinear example to be solved numerically 
bv the method described in section 3, we take the widely 
used test case which is normally referred to as the inviscid 
Burgers equation: 

/32) + = o 
u(x. O) = uo(x) = sin(x). 

For this case the solution u(x, t) develops one shock in each 
period. starting at t = 1 with an infinitely steep gradient at 
the point x: 7r, and then at later times t > 1 the solution 
has a jump discontinuity at the same location. In order 
to prevent nonlinear instabilities from ruining the compu- 
tations during the transition from a smooth solution to a 
solution with shocks, the numerical solution u2,¾(x, t) of 
(32) has been computed by the Fourier-Galerkin method 
augmented with the spectral vanishing viscosity regular- 
ization [18] in the time interval up until the shock discon- 
tinuity has formed. At later times, the method described 
in section 3 is applied and is seen to be more accurate - 
especially for long term integrations on relatively coarse 
grids. 

In order to know when the procedure described in section 
3 should be invoked, the question of how one can decide 
from the knowledge of u2.¾ when a shock has appeared in 
the solution must be answered. For this purpose we have 
implemented a shock-test which is based on the assumption 
that the highest order modes of the truncated series u•v 
contains sufficiently accurate information about the shock 
shortly after it has formed. As soon as the discontinuity 
has been detected the computations are carried on by the 
method described in section 3 on the coarser grid corre- 
sponding to u.¾. The discontinuity location and the jump 
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Figure 7: Computed solution of (32). N = 16. 
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Figure 8: Computed solution of (32), N = 16. 

are computed at each time step applying the reconstruc- 
tion algorithm [8]. Since the exact solution has no jumps 
in its derivatives, the method is implemented with Q = 0. 
Plots of the computed solution are shown in Figures 7 and 
8. Figures 9 and 10 show the error in the computed solu- 
tion in logarithmic scale. Note that the peaks in the error 
shown in Figure 9 are due to the insufficient resolution of 
the curved structure close to the shock at t = 1.1 rather 

than to remaining Gibbs oscillations. In fact, at t = 2.0 
where this curved structure is no longer present, the error 
is evenly spread throughout the domain (Figure 10). This 
indicates that the shock location and the shock strength 
are accurately determined in the calculations. 

Our final test case is an initial value problem for the 
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Figure 10: Pointwise error in computed solution, t = 2.0 

shallow water equations 

0 u• 0 •u• + -- 
-- 

Ot 32 Ox th'u2 
(33) 

32 = h(x) at t = 0. 
Here, u I corresponds to the velocity and u• to the depth, 
while g is the constant acceleration of gravity. As our ini- 
tial condition we choose the symmetric bell-shaped func- 
tion 

h0 0 < x < •r/2 h(x) = ho + C[(x - 5)(-• - x)] 4 7r/2 < x < 37r/2 

h0 37r/2 < x < 27r , 
(34) 
where h0 is the depth of the undisturbed water, and C • 
0 is a constant which determines the size of the initial 

surface elevation, which is seen to have its maximum at 
x = •r. With the symmetric initial condition (34), the 2•- 
periodic solution of (33) is also seen to give the physical 
relevant solution of the problem (33) when fixed walls are 
introduced at x = 0 and x = 2•r. 

When the system is released, the initial surface elevation 
first descends and then splits into two symmetric waves 
traveling in opposite directions, leaving a region of undis- 
turbed water between them. The velocity develops into 
an N-wave [20] with zero velocity at the symmetry point 
x = 7r (Figure 11). Due to the effect of nonlinearity, the 
waves steepen and eventually break, i.e. shock discontinu- 
ities form in the corresponding weak entropy solution of 
(33). 

In the computations we let h0 = 0.5, and C was cho- 
sen to correspond to a maximum initial surface elevation 
of 0.2. The standard Fourier-Galerkin method with de- 

aliasing was used for computing the solution u•v up until 
wave breaking occurred. Spectral viscosity regularization 
was not added in the pre-shock computations in this test 
case, since the solution computed by the Fourier method 
appears to be much less prone to nonlinear instabilities 
during the transition to a discontinuous solution than for 
the Burgers equation. 

Shortly before the formation of the shocks, however, the 
highest order modes in uN are polluted and therefore do 
not contain sufficiently accurate information for the recon- 
struction algorithm to be applied. An integer parameter D 
has thus been introduced, and a shock criterion has been 
implemented based on the highest order modes in UN-2D 
instead, from which also approximate shock locations were 
computed. By observing that the corresponding computed 
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Figure 11: Computed solution of (33), N = 32. 

shock locations for depth and velocity, respectively, ap- 
proach each other as the shocks are formed, shocks in the 
computations were considered to have been formed in the 
solution when those computed location pairs were dose 
enough. In the computations reported here for N = 64 
and N = 128, D was set to 10 and 25, respectively. At 
the instant t = rs, where the discontinuities were detected 
according to this criterion, the reconstruction of u.v on the 
form (21) was invoked. From this time on the computa- 
tions were continued by the procedure described in section 
3 with Q -- 0. We remark here that a weak filtering of the 
smooth part u c• of the solution at t = t• and at subse- N ' 

quent times, was necessary to stabilize the computations; 
and for that purpose an 8th order exponential cuff-off filter 
was implemented. 

Plots of the computed discontinuous solution are shown 
in Figures 12-15. Figures 12 and 13 are approximately 0.1 
time units after the shocks where detected. Figure 14 is 
shortly before the shock waves collide, and Figure 15 is 
after the collision. 

6 Conclusions 

We have, in this paper, presented applications of a mod- 
ified Fourier method for computing nonsmooth solutions 
of hyperbolic problems. The numerical solution is sought 
as an accurate approximation for the truncated Fourier 
series associated with the exact solution. By utilizing 
step-functions, the nonsmooth solution is accurately recon- 
structed from its truncated spectral approximation. The 
reconstructed solution is used to avoid numerical disper- 
sion and diffusion in connection with the computation for 
variable coefficients and nonlinear terms. The described 

approach is seen to give substantially improved accuracy 
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Figure 12: Computed solution of (33), N = 32. 
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Figure 13: Computed solution of (33), N -- 128. 
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Figure 14: Computed solution of (33), N - 128. 



118 ICOSAHOM 95 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

ul, t=3.0 --*-- 
u2, t=3.0 ...... 

:,;,; ;;::: :: •n:d' :::::::::::::::::::::::: 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
x/pi 

Figure 15: Computed solution of (33), N = 128. 

compared to more traditional methods. 
We would. finally, like to give a brief remark on the post- 

processing of the numerical solutions. Referring to (21), 
we recall that when the discontinuities are accurately cap- 
tured, the global error is mainly due to the truncation error 
associated with u c½ In the cases where finite regularity of 
u Q is the dominant source of this truncation error, it is 
reasonable to expect that the global error could be further 

Q In improved by additional post-processing applied to Uiv. 
this connection, the filters described by Vandeven [17] and 
the Gegenbauer reconstruction method due to Gottlieb et 
al. [13] seem particularly interesting. 
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