Proc. Univ. of Houston Lattice Theory Conf..Houston 1973

MODULAR CENTERS OF ADDITIVE LATTICES

Mary Katherine Bennett

The modular center of a lattice $L(\mathfrak{ML})$ is defined to be $\{x \mid x \in L \text{ and } \mathfrak{ML}(a, x) \text{ for all } a \in L\}$ where the symbol $\mathfrak{ML}(a, x)$ means that a and x form a modular pair. A lattice L is said to be <u>additive</u> iff whenever p is an atom of L such that $p \leq x \lor y$, then there exists atoms \mathbf{x}_1 and \mathbf{y}_1 in L with $\mathbf{x}_1 \leq x$ and $\mathbf{y}_1 \leq y$ such that $p \leq \mathbf{x}_1 \lor \mathbf{y}_1$. The lattice L of convex subsets of a vector space V over an ordered division ring is additive, and in this case $\mathfrak{ML}(L)$ is the affine subsets of V.

If L is atomistic and additive, then $\overline{OO}(L)$ is a complete lattice in its own right, with the meet operation in $\overline{OO}(L)$ being the meet operation in L.

We present conditions in L which guarantee that $\widetilde{\mathcal{M}}(L)(p,1)$ is a projective geometry whenever p is an atom of L, and then give conditions on L which imply that $\widetilde{\mathcal{M}}(L)$ is the affine subsets of a vector space V over a decision ring R. In the latter case we show further that the R is ordered and that L is the lattice of the convex subsets of V.

> Department of Mathematics University of Massachusetts Amherst, Massachusetts, 01002