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ARITHMETIC PROPERTIES OF RELATIVELY FREE PRODUCTS 

By Stephen D. Comer 

Arithmetic properties of direct products have been studied 

for many years. W. Hanf showed in [3] that the cancellation law, 

Cantor-Bernstein and square-root properties fail for direct products 

of Boolean algebras. The present note contains some observations 

concerning analogous problems for free products. Free product is 

understood to mean coproduct where the canonical injections are monic. 

Unlike direct products, the free product of algebras depends on the 

variety where it is formed and it may not even exist. Free products 

are assumed to exist in any variety considered. Consider the following 

three properties for algebras A,B,C in a variety V. 

(1) A * B = A * C implies B = C. 

(2) A = B * D and B = A * C implies A = B. 

(3) B * B = C * C implies B = C. 

Properties (1),(2),(3) are known as the cancellation law, Cantor-

Berstein property and square-root property, respectively. These 

properties are established in section 1 under suitable finiteness 

assumptions. Counterexamples to (1),(2),(3) are given for Boolean 
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algebras in section 2. In section 3 the results from section 2 

are applied to derive counterexamples for other classes of alge-

braic structures. 

1. We first consider the cancellation property (1) for a variety 

V. Normally this property will obviously fail if we do not require 

some finiteness condition on A. For example, it usually fails if 

we let A be a V-free algebra generated by an infinite set and let 

B,C be V-free algebras generated by finite sets with different 

cardinalities. For a subclass K of V we say that A cancels 

for K if (1) holds for all B,C in K. The results below give 

conditions under which A cancels for the class of all finite 

members of V. 

Theorem 1.1. Suppose A * B = A * C for A,B,C in V and, in 

addition, B,C are finite and 0 < |Hom(A,X)| < CO for every 
a. subalgebra X of B and every subalgebra X of C. Then B » C. 

Proof. From the conditions on A,B,C,X and the fact that 

|Hom(A,X)| • |Hom(B,X)| =» |Hom(A*B,X)| - ]Hom(A,X)| • |Hom(C,X)| 

it follows that 
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(1.2) |Hom(B,X)| = |ïïom(C,X)| for every X£s{B,c}. 

Let < n}, for some n, be a listing without repetition of 

the maximal proper subalgebras of X. ,For an algebra D the 

principle of inclusion-exclusion gives 

I Epi(D,X) I = I Hom(D,X) [ - £ . | Hom(D,X. ) | + . |Hoiu(D,X 0 X )|~ i x i , j i j 

The right sides of the two equations obtained by letting D «= B 

and D = C are the same by (1.2). Thus, 

(1.3) |Epi(B,X)| = |Epi(C,X)| for every X € S{B,C}. 

Setting X = B in (1.3) gives 0 4 Epi(B,B) = Epi(C,B) so 

|G| _> |B[. Similarly, setting X - C in (1.3) gives an epimorphism 

from B onto C. |c| >_ |B| implies this map is an isomorphism 

so B = C. 

The above proof was obtained by "dualizing" the proof of the 

analogous result for direct products due to L. Lovasz [5]. The 

following statements are immediate corollaries of (1.1). 
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(1.4) If A * B » A * C for A,B,C in V where B,C are finite, 

A finitely generated and Hom(A,X) ^ 0 for every X € S{B,C} 

then B » C. 

(1.5) If every member of V has a one element subalgebra, then 

every finitely generated mciiibcr cancels for the finite members of V. 

(1.6) Finitely generated V-free algebras cancel for the finite 

members of V. 

In particular, (1.5) applies for any variety of lattices or 

groups. By (1.4) finite Boolean algebras cancel for the class of 

finite BA's. 

We now consider the Cantor-Bernstein property (2) and the 

square-root property (3) for the finite members of a variety. The 

message of (1.7) and (1.8) is that the finite versions hold. The 

proof of (1.7) depends on the following lemma due to Bjarni Jonsson. 

Lemma. Suppose A,B in V and A is not isomorphic to a proper 

subalgebra of itself. Then A • A * B if and only if, for every 
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extension E of A and every homomorphism h:B E, h maps B. 

into A. 

Proof. Given E and h let k = 1. * h:A * B E. Let i,i A J 

denote the canonical embeddings of A,B into A * B. By the 
i - Of 

assumption on A, the monic A A * B ^ A is onto so i(A) = 

A * B. Hence h(B) = k(j(B)) £k(i(A)) = A as desired. Conversely, 

consider i:A A * B B: j and let E = A * B (identifying i(A) 

with A) and h - j. Then j (B) £ i(A) and so A «=> A * B. 

Theorem 1.7. The Cantor-Bernstein property (2) holds in V whenever 

A is not isomorphic to a proper subalgebra of itself. In particular, 

it holds whenever A is finite. 

Proof. (2) implies A « = A * C * D ; s o C * D satisfies the condition 
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of the Lemma and there exist a map of D into A. Then C satisfies 

the condition of the lemma; so A = A * C as desired. 

Two proofs of the square-root property for finite algebras 

are given below. The first one uses the argument in 1.1. The 

second was communicated to me by Jan Mycielski who reported that 

it was discovered a few years ago by A. Ehrenfeucht (unpublished). 

Ehrenfeuchtfs proof is outlined below since it illustrates an 

alternative way of giving the counting argument basic to both 1.8 

and 1.1. 

Theorem 1.8. The square-root property (3) holds whenever B,C are 

finite members of V. 

Proof. For every X É S{B,C}, 

|Hom(B,X)|2 « jHom(B * B,X)| « |Hom(C * C,X)| = |Hom(C,X)|2; 

hence, (1.2) holds. Thus, B » C by the same argument used in the 

proof of 1.1. 

The key to 1.8 and also 1.1 is to show that, for finite 

algebras B and C, (1.2) implies (1.3). 
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Ehrenfeucht proved ( 1 . 3 ) by induction on |x|. For |x| = 1 

the result is trivial. Now, for any algebra A, 

|Hom(A,X)| = |Epi(A,X)| + ^ |Epi(A,D)|. 
T 

In the two equations obtained by letting A = B and A = C, the 

left sides are equal by ( 1 . 2 ) and the right; i.v.riu;; on the right 

side are equal by the induction hypothesis. Hence 

j Epi(B,X)1 = |Epi(C,X)| follows. 

2. We now turn our attention to some counterexamples. To minimize 

our work we introduce property (4) below. Property (2) is clearly 

equivalent to the statement that A = A * C * D implies A = A * C 

This statement, in turn, implies 

(4) A = A * C * C implies A = A * C. 

Observe that (3) also implies (4); for if there exist A 

and C where A ^ A * C but A = A * C * C, then (A * C) * (A * 

A * A while A ^ A * C. 
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For BA's we will show that (1) fails with A finite and 

(4) fails with C finite (and thus, (2), (3) also fail). The 

examples in (2.4), (2.5) are based on those due to Hanf and 

Tarski in [3] for direct products. We need the following from [3]. 

2 ^ 2 

(2.1) There exist denumerable BA's B,C such that B = C and 

B | C. 
(2.2) For each integer n > 1 there exist a BA H^ such that 

H = H x 2n but H % H x 2k for k = l,...,n-l. The H 's n n n n n 
2 ^ are uncountable and H - H . n n 

The following simple observation is crucial. 

(2.3) If A,B are BA's and B is finite with n atoms then 
^ n \ A * B =» A (the direct product of A with itself n times). 

Proof. The dual space of A * B is the cartesian product of the 

dual X of A times an n element discrete space. Thus, it is 

also a disjoint union of n copies of X. 

2 
Theorem 2.4 (1) The four element BA 2 does not cancel for the 

class of all denumerable BA's. 

(2) The two element BA is the only finite BA to cancel for the 
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class of BA's. 

Proof. (1) Let A = 22 and choose B,C from (2.1). By (2.3), 

A * B = a B s=C = A * C but B f C. 

(2). Suppose A = 2n for n > 1. Let B ~ H and C = H x 2. n n 
From (2.2), B ^ C. However, using (2.3) and (2.2), A * C = 

(H x 2)n ï (H x 2)n = H n x 2n = H n = A * B. n v n n n 

Theorem 2.5. Property (4) fails for BA's with C finite. 

Proof. Let C = 22 and A = H x 2. By (2.3) and (2.2), 

A * C * C = (H3 x 2) = H^ x 2 = (H^ x 2 ) x 2 « A but 
O; 2 'V A * C = H 3 x 2 f A. 

It is worth noting the counterexample to (3) obtained from 
2 

(2.5) is A = Il3 x 2 and B = H^ x 2 . By passing to the dual 

spaces we get Boolean spaces X,Y which are not homeomorphic however, 

X x x is homeomorphic to Y x y. This answers an old question 

posed by Halmos in [2]. 

3. We can obtain counterexamples to the arithmetic properties 

(1), (2), and (3) for other classes of algebras from the results 

in the previous section by constructing appropriate functors. 
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Proposition 3.1. Suppose £ is a category (with free products) 

and r is a full embedding of the category of BA's into C- that 

preserves free products. Then (1), (2), (3), and (4) fail in 

IT . Moreover. does not cancel for G for finite n > 2. 

The proof is straightforward using the fact that a full 

embedding has the property: A = B iff TA « TB. 

We apply (3.1) below to obtain examples for the variety 

generated by a primal algebra, bounded distributive lattices, and 

rings. In each case the functor used is 

one that arises in the 

study of sectional representations over Boolean spaces. Let X^ 

denote the Stone space of a BA B. For a universal algebra A and 

a Boolean space X let F(X,A) denote the algebra of all continuous 

functions from X into A (given the discrete topology). For 

each of the varieties (categories) to be considered a natural 

algebra A is selected in I? . The functor F from BA's into 

t is defined for a BA B by T(B) « r(X^,A). Y does the 

natural thing to homomorphisms. This functor F is always an 

embedding. To apply (3.1) we have to check in the categories 

below that F is full and preserves free products. 
(3.2) is the variety generated by a primal algebra A. 

In this case the functor F establishes an equivalence 
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between the category of BA's and ^ (see Hu[4]). Thus, (3.1) 

applies and its conclusion holds for *£. . In particular, A does 

not cancel for ^ . 

(3.3) ^ is the variety of (0,1)-distributive lattice. 

Let A be the two element distributive lattice with 0 and 

1 distinguished. The functor Y in this situation essentially 

just forgets the complémentations opération. The embedding is full 

since any 0,1 preserving lattice homomorphism between BA's also 

preserves complements. The following lemma (3.4) implies that 

F preserves free products. 

(3.4) If B^ is a Boolean subalgebra of a BA B (i é I) and 

B = II*Bi (as BA's), then B = IÏ*B± as (0,1)-distributive lattices. 

The proof of (3.4) easily follows from the internal 

description of free products of BA's and a similar description for 

bounded distributive lattices due to Gratzer and Lakser [1]. 

Thus, (3.1) applies and its conclusion holds for the class 

of bounded distributive lattices. In particular, 2n does not 

cancel for this class for 1 < n < U). 

(3.5) Rings. 

Let A denote a fixed field and ^ the category of all 
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commutative rings that contain A as a subring. Mappings in Ç ai 

A-homomorphisms. The free product operation in is the tensor 

product over A (see Zariski, Samuel [6]). The ring F(B) =» 

r(XB,A) is in when A is identified with the subring of 

constant functions on X^. Observe that T(B) is commutative and 

B is isomorphic to the BA B(T(B)) of all idempotent elements of 

r(B). In fact, B(F(B)) is just the double dual space of B. It 

easily follows that the embedding F is full. We need the 

following lemma. 

^ / 

(3.6) For Boolean spaces X,Y,F(X,A) T(Y,A) - (X x Y,A) . 

The obvious projections of X x Y onto X and Y induce 

embeddings f:F(X,A) F(X x Y,A) and g:T(Y,A) F(X x Y,A) . Let 

R = f(r(X,A)) and S = g(r(Y,A)). Note that cr 6 F(X x y,A) is in 

R if and only {a_1(a):a € A} partitions X x y into disjoint . 

sets of the form N x y where N is a clopen subset of X. A 

similar description of S also holds. 

For N,N' clopen subsets of X,Y respectively, let 

denote the characteristic function of NxN'. For NXN 
a 6 A ac N X N, « (acNxy^) • (cXXN») is in the subring generated by 

R and S; thus, R and S generate F(X x Y,A). 

Below we need the observation that (f(cr') • g(T*))(x,y) « 

a' (x) • xT (y) for all a' 6 F(X,A) , T' € T(Y,A), X € X, y € Y. 
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To verify (3.6) it remains to show R and S are linearly 

disjoint over A(cf., Zariski-Samuel [6]). Suppose € R 

and S a r e e a ch linearly independent sets over A. 

For each i,j choose CR̂  (: F(X,A) and . T J 6 F(Y,A) such that 

f (o> ! ) = a. and g(TÎ) = T.. In addition consider c. . 6 A such i l J 3 iJ 

that ;. .c..aft.. ij i J 

For (x,y) G X x Y, the observation above shows that 

0 - ï i / i j t V i » ^ ' • l i d ^ w K U ) . 

Since are linearly independent in I'(X,A) over A, it 

follows that 0 «= y . c . . T Î ( y ) for each j and y G Y. The linear 

independence of in T(Y,A) over A now implies that 

= 0 for each i,j. Thus, {a^T_.:i = l,...,n; j = l,...,m} is 

linearly independent over A; so R and S are linearly disjoint 

and consequently (3.6) holds. 

From (3.6) it follows that T preserves free products and 

hence (3.1) applies. So (1), (2), (3), and (4) fail in & , In 

particular, An (1 < n < U)) does not cancel for the category of all 

commutative rings that contain the field A. 
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