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Disjointness conditions in free products of

distributive lattices: An application of Ramsay's theorem.

Harry Lakser(l)

1. Introduction. Let 1 be a lattice. We say that L satisfies the

finite disjointness condition if, given any a € L and any subget S <€,

such that a ¢ S and such that x Ay = a for any distinct x, y €8 ,
it then follows that S 1is finite. Similarly we say that 1L satisfies

the countable disjointness condition if the above hypotheses imply that

S is countable (rather than actually finite). It has 16ng been known

that any free Boolean algebra satisfies the countable disjointness

condition =-- see e.g. R. Sikorski [6], §20, Example L), on page 72,

where the countable disjointness condition is called the o-chain condition.
R. Balbes [1] proved that any free distributive lattice satisfies the finite
disjointness condition.

In this paper we extend these results to free products in the
category 8 of distributive lattices and in the category ﬂb whose objects
are bounded distributive lattices and whose morphisms preserve the bounds.
Clearl& any free distributive lattice is the free product in 8 of a

family of one-element lattices, and it is well-known (see [3]) that the

(1) This research was supported by the National Research Council of Canada.
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free Boolean algebra, regarded as a bounded lattice, is the free product
in Sb of a family of four -element lattices. We then generalize the above

‘disjointness conditions by proving the following theorem.

Let (Li ‘ i €1I) be a family of lattices in ® (resp. in 8b)

and, for each 1 €I , let L satisfy the finite disjointness condition.

i
Then the free product of the family (Li | i €I) in & (resp. in Sb)

satisfies the finite disjointness condition (resp. the countable disjointness

condition).

I should like to thank G. Gratzer and A. Hajnal for many helpful

conversations regarding the subject matter of this paper.

2, The word problem. To accomplish our aim we shall need a characterization

of comparability of elements in the free product in # and in Sb . Let
(Li l i € I) be a family of lattices in 8 or &b and let L be the
free product of (Li | i € I) in the appropriate category. We take the

point of view that each L, 1is a sublattice of L ; it follows that in #

i
Li N Lj = ¢ whenever i # j , and that in Db Li n Lj = {O, 1} whenever
1 #3j . As usual, 0 denotes the lower bound in ﬂb and 1 denotes the
upper bound. We denote by P the subset U(Li | i €I) of L . Note
that, 1p  ,1f x, y €P and x <y then there 1s a unique i € I  such
that x, y € Li andy clearly, x <y in that ‘Li . Similarly, in 8b , if
X, y €P and x <y then either x =0 or y =1 or there is a unique

i € I such that x,yELi (and x <y in that Li) .
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Since L is distributive, each a € L can be expressed in the
form \/(AX | X €J) where J is finite and nonempty, and each X € J
is a finite nonempty subset of P (2). We can always choose each such X
to be reduced, that is, to satisfy |X N Lil €1 for all i € I , where
lAl denotes the cardinality of the set A . 1In addition, the term
"reduced" will be used only for nonempty sets. Note that in 8b if X
is reduced and 0 € X then X = {0} , and similarly for 1

Any element of L can also be expressed in the dual form

/Q(L/X.l X €J) , J finite and each X reduced.

LEMMA 1. Let X, Y be reduced subsets of P. In either category 8 or Bb s

AX € VY if and only if there are elements x € X and y €Y such that

X sy

Proof. Assume that for each <(x, y) € X X Y, x # y . Observe first that

0 ¢ X,1 ¢ Y 1if we are in &b . In the remainder of the proof it is

irrelevant whether we are in 8 or in Sb . Let
L=fier|fxnrf=1,xne|=0)

L={er|gnr =0, |rn L, | =1}

Ip={ter | |xnr|=1]rn L, | =1}

(2) This notation is preferable for our purpose to the equivalent double

n ‘ n.k

| 1 1 2 . 1 i -
a (x1 Aee A Xy )y Vv (x2 AeeaA x, ) I \% (xk AeeoA X ) x] €P .

index notation
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Let 2 be the two-element lattice {0, 1} with 0 <1 . For
each 1 €I we define a homomorphism 9 Li > 2 using the Prime Ideal

Theorem:

If i €1 - (I1 Ut, U 13) 9 is arbitrary.

2

If 1 €I, , let xq@ =1 where XNL, = {x} . (This is clearly
possible in 8 by taking the constant L, 2. In ﬂb we note that
x #0 and so by the Prime Ideal Theorem we can take O P = 0, x¢Q = 1,
and, perforce, 1¢& =1.)

Similarly, if i € 12 , let vy = 0 where Y N Li = {y} .

If i€1,, let XﬂLi={x},YﬂLi={y}.Since x £y,
we can define P, so that x @ = 1, yCPi= 0

The family of homomorphisms (mi l i € I) then extends to a
homomorphism ¢: L + 2 such that x¢ =1 for all x €X and y@ =0 for
all y €Y . Thus (VMY)p=0<1= (AX)yp , showing that AX #VY s

and proving the lemma.

A more complete treatment of the word problem can be found in

Gratzer and Lakser [3].

3. The finite disjointness condition in 8 . If I 1is any set we denote

the diagonal {{Y, v) € T X I'} by wp. We first recall the classic result

of Ramsay in the following form:

LEMMA 2 (Ramsay's Theorem). Let I be an infinite set and let R., .-+, R

n

1)
be binary symmetric relations on I' such that wl-.U R1 U oo U Rn =T XT.
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Then there is a subset I'' ST and an i <n such that

(i) for any distinct o, B € r’ , {a, B) € Ri ;

and

(ii) T’ 4is infinite.

For our purposes the following alternative characterization of the

finite and countable disjointness conditions is preferable.

LEMMA 3. A distributive lattice L satisfies the finite (resp. countable)

disjointness condition if and only if the following condition holds.

Given any a € L and any subset S <L such that x ¥ a for

all x € S and such that x Ay <a for distinct x, y € 8§ , it then

follows that S is finite (resp. countable).

Proof. The proof follows immediately by observing that if S satisfies
the condition of the lemma then

(1) xVa>a for all x € 8 ;

(ii) If x, y € S are distinct then
(x Va) AN(yVa) =(xAy)Va=a (and so the correspondence x »x V a

from S to {xVa | x € S} 1is one-to-one).

THEOREM 1. Let (Li l i €I) be a family of lattices in #® satisfying

the finite disjointness condition. Then. L , the free product in & , also

satisfies the finite disjointness condition.
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Proof. Let a €1 and let (sY ‘ Yy € T) be any family of elements of
L such that

(A) for each v €T , Sy # a ;
and

(B) 1if o, B € ' are distinct then Sa A sB <a .

We show that I must be finite by proving a sequence of
statements involving successively weaker hypotheses about the form of the

and of a .
Sy

Statement 1. If a €P and sYE P for all Yy €T then T is finite.

Let a € Li for some 1 € I and let «a, B be distinct elements

of VY . Then, since S, A sg S a, it follows that S, 8 € Li by

B
Lemma 1 and condition (A). Thus {s,Y l vy €Tl c Li also and perforce

I' is finite since Li satisfies the finite disjointness condition.

Statement 2. If a €P and sY ==/\XY for each Y € I' where XY is a
reduced subset - of P then I is finite,

For each Y €T and each x € )(,Y , X ¥ a by Lemma 1 and (A).
Let a € Li . By (B) if o, B €T are distinct /\Xd A /\XB <a.
There are thus x € Xa n Li sy € XB N Li such that x Ay €£a . But
lXY n Li‘ $1 for all Y €T . Thus we have a family (xY I_Y €TI) such

that x €L, for all y €T, such that x_ ¥a for all Y €T and

such that X, A x, <a for distinct o, B . Thus, by Statement 1, T' is

finite.
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Statement 3. 1f SY = /\XY s X'Y reduced, for each vy , and if a = Vy )

Y reduced, then ' 1is finite.

Let Y={y1, ---,yp} . Then for each j <p and each Y €T

/\XY {Eyj , by (A). Define binary relations R . Rp on [ by setting

1)
(o, B) € Rj if and only if /\Xa A AXR < yj . Since, for any distinct

o, BET, /\xcv A /\XB < VY it follows, by Lemma 1, that

wl..U Rl U ee- URp =T XT . Nowlet j <p and let T’ be a subset of T
such that (o, B) € Rj for any two distinct a, B € r’ . Then, by

/

Statement 2, T is finite. Thus, by Ramsay's Theorem, ' is finite.

Statement &4, If a = \/Yl A eee A \/Yr where each Yj is a reduced subset

of P and if, for each Yy €T , Sy = \/(I\X ‘ X € JY) for some finite

nonempty set JY of reduced subsets of P , then T 1is finite.

Since for each v €T SY #a then for each Yy € ' there is an
XY € JY and a j(¥) sr such that /\X'Y # \/Yj(y) . For each j =sr let
let I‘J. ={yer| jy) = §} . Then if «, B are distinct elements of I"j ’
/\Xd A /\XB <s Nsgsas VY, . But, by definition of l"j s

B 3

/\XY *ij if v € Fj . Thus, by Statement 3, I"j is finite. It thus

follows that [ = 1"1 U ..oy I“r is finite,proving Statement 4.

Since each element of L can be expressed in both forms
V(/\X | X €J) and /\(\/Y | Y € K) , Statement 4 is the statement of the

theorem.
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4., The countable disjointness condition in Sb.' The situations in &

and in &b differ essentially because of the following fact. In 8 , if
X,y € L; » if z € Lj ,and if x Ay <z then i =3j . In ﬂb R
however, it is possible that 1 # j ; 1f 2z # 1 then x Ay <z 1if and

only if x Ay =0 . It is precisely this difference which yields the

countable disjointness condition only, rather than finite disjointness.
We will also need a more delicate analysis since the argument establishing
Statement 2 of Theorem 1 does not apply in ﬂb precisely because of this

difference.

THEQREM 2. Let (Li | i €I) be a family of lattices in ﬂb satisfying

the finite disjointness condition. Then L , the free product in ﬁb )

satisfies the countable disjointness condition.

Proof. Let a €L and let (sY l Y €T) be any family of elements of

L such that
(A) for each y €T , s,Y # a;

]
and

(B) if o, B €' are distinct then Sy A sg < a‘.

We show that I 1is countable by proving a sequence of statements
involving successively weaker hypotheses about the form of the s and

of a .

Statement 1. If a € P and sY €P for all Yy €T then I is finite.
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Let a € Li . Since, for each v €T , sY ¥ a and if o # B

8 <a , it follows that there is a j € I such that Sy € Lj

for all vy €T . If i =3 the finiteness of T follows as in

then s A s
o

Statement 1 of Theorem 1. If i # j then s, N 85 =0 for distinct a, B .

Since Sy ¥ a implies Sy k0 , the finiteness of [ follows in this

case from the fact that L, satisfies the finite disjointness property.

3

Statement 2. Let n 21 be an integer, let a € P , and let s, = /\XY
for each v € [ , where XY is a reduced subset of P with lXYl =n .

Then [ is finite.

The case n =1 1is Statement 1. We prove Statement 2 by induction

. > . i = [ .
on n Let n>1 First fix YO €T and let xYo {xl, s xn}
Then there are distinct i(l), ---, i(n) in I such that X € Li(k)

each k <sn . PFor each k <n let Tk ={y€er I X,Y N Li(k) # o} . Now
rl U ee- U Tn =T ; since ,/\XYO fa, /‘\xY fa if vy # Yo » and

/\X /\/\X S a it follows that, for each vy, X NL,
YO Y Y i

for

(1 # ¢ for some k .
It suffices thus to prove that each Fk is finite. For each vy € Fk let

s /
xY be defined by setting XY n Li(k) {xY} and let XY = XY - Li(k) .
Then !X;l =n=-1 and xY = X; U {xy} . We define two symmetric binary
relations R and S on Fk . We set (g, B> € R if and only if
x, N%g 5@ and we set (o, B) €S if and only if o # B and (a, B) § R .
Then (&, B) € S only if /\xc; A/X, €a . Since n>1 and lx;l =n-1
if v € Tk we conclude by Ramsay's Theorem and the induction hypothesis

that Tk is finite for each k . Thus T 1is finite.
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Statement 3. Let n =1 . For each Y €T let sY = /\XY where XY

is reduced and IXyl =n . Let a=\/Y,Y reduced. Then I is finite.

The proof of this statement is a word-for-word duplicate of the

proof of Statement 3 of Theorem 1.

Statement 4. Let a = \/Y1 A see A \/Yr where each Yj is a reduced
subset of P . For each Yy €T let JY be a finite nonempty set of

reduced subsets of P such that Sy = V (AX | X € JY) . Then T is

countable.

For each Y € I' there is an XY € JY and a j(y) €r such that

/\XY # \/Yj(Y) . Por each j <sr and n 21 let

rjn = {y €T l j¢y) = i and lxyl =n} .
If «, B are distinct elements of an then /\Xa A /\XB < 5o A sg <a < \/Yj
i = d X Y, . Th
By definition of rjn s lxyl n if Yy € an an /\ v # \%) 3 us
I', 1is finite by Statement 3. But [ = LJ(an [ nz1l,1<]<r),;
jn

thus T is countable, proving Statement 4.

Statement 4 is the statement of the Theorem.

To complete this section we present an example of a countable
family of finite lattices whose free product in ﬂb does not satisfy the
finite disjointness condition. Lét the index set I be the set of positive

integers and, for each i € I , let the lattice Li be the four-element

lattice in the diagram.
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1 Let L be the free product in Sb

of the Li’ i €1 . Let s; = bl and

b for each n>1 1let s = a

A VATI AN
{ 0 172y a Ab

Let S = {sn} . Then S 1is infinite,
0 0 <s for each n, and if m #n , say

L m<n, then s As =0, since s <b
m n m m

and s sa .
n ™

Thus L does not satisfy the finite disjointness condition. Of course, L
is just the underlying lattice of the free Boolean algebra generated by a
countable set, and this example shows that it need not satisfy the finite

disjointness condition,

5. Epilogue, For any infinite cardinal m one can of course define the

m-disjointness condition: a lattice L is said to satisfy the wm-disjointness

condition if, given any a € L. and any S & L such that a ¢ S and
x ANy =a for distinct x, y € § , it then follows that IS! <m. An

obvious question is the following:

In either category & or ﬂb is the m-disjointness condition

preserved under free products for m > RO ?

The methods presented in sections 3 and 4 cannot be applied to

answer this question in the affirmative because, as first observed by
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Sierpinski [5], the obvious extension of Ramsay's Theorem to infinite
cardinals does not hold.

There are Ramsay -type theorems for infinite cardinals; see
ErdSs,Hajnal, Rado [2] for a rather complete survey. Of particular interest
to our problem is the following result of Kurepa [4], under the assumption

of the generalized continuum hypothesis:

Let o be any ordinal. Let T be a set such that

IF] =3 Na-+2 , and let Rl’ cee, Rn be binary symmetric relations on T
such that wI,U Rl U «.- U Rn =T XT . Then there is a subset I'' & T

and an 1 s n such that |F'| 2 Ra and for any distinct o, BET'

+1
{a, B) €R,
i

Using this result in place of Ramsay's Theorem the methods of

sections 3 and 4 caxry over to prove:

Let (L, | 1 €I) be a family of lattices in 8 or ﬁb

satisfying the Ra ~disjointness condition , ¢« 2 0 . Then the free

+1

product in & or Sb satisfies the Ra-rz ~disjointness condition.

Unfortunately I have been unable to construct an example to show

that Ra-fz cannot be replaced by Ra-¥l . This is thus to date an open

problem.
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