
Proc. Univ. of Houston 
Lattice Theory Conf..Houston 1973 

Disjointness conditions in free products of 

distributive lattices: An application of Ramsay's theorem. 

Harry Lakser< 1 ) 

1. Introduction. Let L be a lattice. We say that L satisfies the 

finite disjointness condition if, given any a € L and any subset S £ L 

such that a ^ S and such that x A y « a for any distinct x, y € S , 

it then follows that S is finite. Similarly we say that L satisfies 

the countable disjointness condition if the above hypotheses imply that 

S is countable (rather than actually finite) . It has long been known 

that any free Boolean algebra satisfies the countable disjointness 

condition -- see e.g. R . Sikorski [6], §20, Example L ) , on page 72, 

where the countable disjointness condition is called the cr-chain condition. 

R. Balbes [1] proved that any free distributive lattice satisfies the finite 

disjointness condition. 

In this paper we extend these results to free products in the 

category & of distributive lattices and in the category whose objects 

are bounded distributive lattices and whose morphisms preserve the bounds. 

Clearly any free distributive lattice is the free product in & of a 

family of one-element lattices, and it is well-known (see [3]) that the 

(1) This research was supported by the National Research Council of Canada. 
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free Boolean algebra, regarded as a bounded lattice, is the free product 

in a family of four-element lattices. We then generalize the above 

disjointness conditions by proving the following theorem. 

Let (L i | i € I) be a family of lattices in & (resp. in $ b ) 

and, for each i € I , let L^ satisfy the finite disjointness condition. 

Then the free product of the family (L^ | i € I) iii & (resp. in JS>b> 

satisfies the finite disjointness condition (resp. the countable disjointness 

condition). 

I should like to thank G. Gratzer and A . Hajnal for many helpful 

conversations regarding the subject matter of this paper. 

2. The word problem. To accomplish our aim we shall need a characterization 

of comparability of elements in the free product in & and in • L e t 

(L^ | i. 6 I) be a family of lattices in S or and let L be the 

free product of (L i | i € I) in the appropriate category. We take the 

point of view that each L^ is a sublattice of L ; it follows that in S 

O L . » 0 whenever i ^ j , and that in & h h i (1 L^ » {0, l) whenever 

i ^ j . As usual, 0 denotes the lower bound in & and 1 denotes the 
b 

upper bound. We denote by P the subset (J( | i € I) of L . Note 

that, in & , if x, y € P and x S y then' there is a unique i € I such 

that x , y € L t and, clearly, x <; y in that L± . Similarly, in J®b , if 

x , y € P and x £ y then either x « 0 or y » 1 or there is a unique 

i € I such that x , y € L. (and x £ y in that L.) . 

157 



Since L is distributive, each a G L can be expressed in the 

form \/(/\X j X € J) where J is finite and nonempty, and each X € J 

(2) 

is a finite nonempty subset of P . W e can always choose each such X 

to be reduced t that is, to satisfy |x 0 L | ^ 1 for all i G I , where 

|A | denotes the cardinality of the set A . In addition, the term 

"reduced" will be used only for nonempty sets. Note that in if X 

is reduced and 0 6 X then X = {o} , and similarly for 1 . 

Any element of L can also be expressed in the dual form 

/\(\/X | X € J) , J finite and each X reduced. 

LEMMA 1. Let X , Y be reduced subsets of P . In either category & or 

/\X £ \/Y if and only if there are elements x € X and y € Y such that 

x £ y . 

Proof. Assume that for each (x, y) Ç X X Y^ x £ y . Observe first that 

0 ^ X , 1 ^ Y if we are in . In the remainder of the proof it is 

irrelevant whether we are in & or in JSL . Let 
b 

• - {i € I | |x n L J = l, |Y n L I | = 0 } 

1 2 - U € 1 I |x n L J - 0 , |Y n L I - 1} 

13 - {I f 1 I |x n L J '- |Y n L J - 1} 

(2) This notation is preferable for our purpose to the equivalent double 

index notation 
1 nl 1 n ? 1 "lr • 

a « ( x x A ...A x 1
A ) V (x£ A ... A x 2

z ) V • • • V (x£ A . . . A x ^ ) , x} € P . 
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Let 2 be the two-element lattice fO, l] with 0 < 1 . For (N/ 

each i € I we define a homomorphism cp̂  : L^ + 2 using the Prime Ideal 

Theorem: 

If i € I - (I x U I 2 U I 3 ) cpi is arbitrary. 

If i € I 1 , let xtp i= 1 where X fl L± = [x] . (This is clearly 

possible in & by taking the constant L^ 2 . In ^ we note that 

x ^ 0 and so by the Prime Ideal Theorem we can take 0 cp̂  = 0 , x cp̂  = 1 , 

and, perforce, lcpi = 1.) 

Similarly, if i € I 2 , let y cp̂^ - 0 where Y fl L^ - (y) . 

If i € I 3 , let X 0 L± « {x} , Y fl L± » fy) . Since x £ y , 

we can define cp̂  so that x cp̂  = 1 , y c P ^ = 0 . 

The family of homomorphisms (cp̂  | i € I) then extends to a 

homomorphism cp: L £ such that xcp •» 1 for all x € X and yep 83 0 for 

all y € Y . Thus (N/Y>9 « 0 < 1 » (AX)cp , showing that A X ^ V Y , 

and proving the lemma. 

A more complete treatment of the word problem can be found in 

Gratzer and Lakser [3]. 

3. The finite disjointness condition in & . If F is any set we denote 

the diagonal {(y, y) € F X r) by ujp . We first recall the classic result 

of Ramsay in the following form: 

LEMMA 2 (Ramsay's Theorem) . Let F be an infinite set and let R,, . . . t R 
~ , i' ' i 

be binary symmetric relations on F such that U) rU R, U ••• LI R « r X r . 
i 1 n 
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Then there is a subset r ' £ T and an i £ n such that 

(i) for any distinct a, $ € r' , (a, P> € R ; 

and 

(ii) r ' is infinite. 

For our purposes the following alternative characterization of the 

finite and countable disjointness conditions is preferable. 

LEMMA 3. A distributive lattice L satisfies the finite (resp. countable) 

disjointness condition if and only if the following condition holds. 

Given any a € L and any subset S £ L such that x ^ a for 

all x € S and such that x A y £ a for distinct x , y € S , it then 

follows that S is finite (resp. countable). 

Proof. The proof follows immediately by observing that if S satisfies 

the condition of the lemma then 

(i) x V a > a for all x € S ; 

(ii) If x , y € S are distinct then 

(x V a) A (y V a) = (x A y) V a = a (and so the correspondence x + x V a 

from S to {x V a | x Ç S} is one -to -one) . 

THEOREM 1. Let (L | i € I) be a family of lattices in & satisfying 

the finite disjointness condition. Then . L , the free product in & , also 

satisfies the finite disjointness condition. 
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proof. Let a € L and let (s | Y € O ^e any family of elements of 

L such that 

(A) for each Y € F , s^ ^ a ; 

and 

(B) if a, 3 € r are distinct then s A s D £ a . 
' a p 

We show that F must be finite by proving a sequence of 

statements involving successively weaker hypotheses about the form of the 

s and of a . 
Y 

Statement 1. If a € P and s P for all Y € T then T is finite. 

Let a € L^ for some i 6 I and let a, 3 be distinct elements 

of Y • Then, since s A s . S a , it follows that s , s. € L. by 
. a $ ' a' 8 i 

Lemma 1 and condition (A). Thus {s^ | \ Ç f] £ L. also and perforce 

r is finite since L^ satisfies the finite disjointness condition. 

Statement 2. If a € P and s = for each Y € T where X is a 
Y Y Y 

reduced subset of P then T is finite. 

For each Y € T and each x € X^ , x £ a by Lemma 1 and (A). 

Let a € . By (B) if a , 0 € T are distinct A x ^ A A x ^ £ a . 

There are thus x € X ^ fl L i ; y 6 X ^ fl L. such that x A y £ a . But 

|X H L | S I for all Y € T . Thus we have a family (x | Y € F) such Y J- Y 

that x^ € L i for all y € T , such that x^ if a for all Y € T and 

such that x^ A x R £ a for distinct a, 0 . Thus, by Statement 1, F is 

finite. 
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Statement 3. If s^ = A x ^ , X ^ reduced, for each Y , and if a = V y , 

Y reduced, then T is finite. 

Let Y = {y^, y^} . Then for each j £ p and each Y € F 

/\ x ^ Y • > b Y (A)• Define binary relations R , - -•, R on T by setting 
Y J P 

(a, 8> £ R. if and only if A x A A x „ £ y . . Since, for any distinct 
J a P j 

a, 0 £ F , A x ^ A A X p < V Y it follows, by Lemma 1, that 

u i p U R , U ••• U R = r X r . Now let j <; p and let r ' be a subset of F r i p 

such that (a, p) € R^ for any two distinct a, 3 € F' . Then, by 

Statement 2, T ' is finite. Thus, by Ramsay's Theorem, T is finite. 

Statement 4 . If a - X/Y, A . . . A \/Y where each Y . is a reduced subset 
1 r J 

of P and if, for each Y € T , s^ • V ( A X I x ^ f o r s o m e f i n i t e 

nonempty set J^ of reduced subsets of P , then T is finite. 

Since for each Y € F s^ £ a then for each Y € F there is an 

X ^ € J^ and a j(Y> * r such that A x ^ If. . For each j £ r let 

let Fj = {Y € T j j(Y) * j) . Then if a , 0 are distinct elements of F^ , 

/\X A A £ sa A s D £ a £ V Y , . But, by definition of F. , 
' a p a p j ' J ^ 

/ \ x y
 i f v € Fj . Thus, by Statement 3, F^ is finite. It thus 

follows that F • r̂ , U • • • U T is finite^proving Statement 4 . 

Since each element of L can be expressed in both forms 

V ( A X | X € J) and A ( V Y | Y € K) , Statement 4 is the statement of the 

theorem. 
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4 . The countable disjointness condition in . The situations in & j b 

and in JŜ  differ essentially because of the following fact. In & , if 

x , y € L^ , if z € L^ , and if x A y <. z then i = j . In ^ , 

however, it is possible that i ^ j ; if z 1 then x A y s z if and 

only if x A y = 0 . It is precisely this difference which yields the 

countable disjointness condition only, rather than finite disjointness. 

We will also need a more delicate analysis since the argument establishing 

Statement 2 of Theorem 1 does not apply in precisely because of this 

difference. 

THEOREM 2. Let (L t | i € I) be a family of lattices in & satisfying 

the finite disjointness condition. Then L , the free product in J&b , 

satisfies the countable disjointness condition. 

Proof. Let a € L and let (s^ | Y € D be any family of elements of 

L such that 

and 

(A) for each y €. T , s fc a; 

(B) if oi, p € r are distinct then s A s Q £ a . 

a p 

We show that T is countable by proving a sequence of statements 

involving successively weaker hypotheses about the form of the s^ and 

of a . 

Statement 1. If a € P and s^, € P for all y € T then T is finite 
Y 
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Let a € L^ . Since, for each Y € T , s^ ^ a and if a ^ B 

then s A s n ^ a , it follows that there is a i € I such that s € L . 
a 3 ' Y J 

for all y € F . If i = j the finiteness of F follows as in 

Statement 1 of Theorem 1. If i / i then s A sn - 0 for distinct ot, P . 

Since s^ ^ a implies s^ ^ 0 , the finiteness of F follows in this 

case from the fact that L^ satisfies the finite disjointness property. 

Statement 2. Let n ^ 1 be an integer, let a € P , and let s^ = 

for each Y € F , where is a reduced subset of P with |x^| = n . 

Then F is finite. 

The case n = 1 is Statement 1. We prove Statement 2 by induction 

on n . Let n > 1 . First fix Yrt € F and let X = fx,, •••, x } . 
0 Yq I n 

Then there are distinct i(l), i(n) in I such that x, € L . N for 
k i(k) 

each k £ n . For each k £ n let F, - {y € F I X ^ fi L. „ N i . Now 
k 1 Y i(k) ^ 

r i U " " U F n " r ; S i n c e A X
y £ a > A X y £ a if Y + Y Q , and 

/ \ X A / \ x £ a it follows that, for each y, X fl L. v ^ 0 for some k . 
Yq Y Y I v. ky • 

It suffices thus to prove that each F^ is finite. For each Y € let 

be defined by setting X ^ fl « {x y} and let = X y — L i ( k ) . 

Then = n - 1 and = U {x^} . We define two symmetric binary 

relations R and S on . We set (a, p> € R if and only if 

x^ A Xp £ a and we set (a, P> € S if and only if a î 8 and (a, p) $ R „ 

Then {a, € S only if A /\X R * a . Since n > 1 and |x^| = n - 1 

if Y € F^ we conclude by Ramsay's Theorem and the induction hypothesis 

that r R is finite for each k . Thus T is finite. 
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Statement 3. Let n ^ 1 . For each Y € T let s = A x where X 
Y Y Y 

is reduced and |x^| « n . Let a = \ / Y , Y reduced. Then T is finite. 

The proof of this statement is a word-for-word duplicate of the 

proof of Statement 3 of Theorem 1. 

Statement 4 . Let a = X/Y.. A ••• A V Y where each Y . is a reduced 
I r J 

subset of P . For each Y € F let J^ be a finite nonempty set of 

reduced subsets of P such that s^ = V ( A x I X € J ) . Then T is 
Y 1 Y 

countable. 

For each Y € T there is an X ^ € J^ and a j(y) ^ r such that 

/\x,y ^ V Y j ( y ) " F o r e a c h ^ r a n d n ^ 1 l e t 

I\ = (Y € r | j(Y) « j and |x | « n) . 
jn Y 

If ot, 0 are distinct elements of R then / \ x ^ A A X G <; s^ A s^ <: a <: V Y 

By definition of T ^ , |X y| « n if Y € T j n and A x
y £ V Y j . Thus 

r. is finite by Statement 3. But F = U ( F. I n H , M j « r ) ; 
jn jn 

thus r is countable, proving Statement 4 . 

Statement 4 is the statement of the Theorem. 

To complete this section we present an example of a countable 

family of finite lattices whose free product in does not satisfy the 

finite disjointness condition. Let the index set I be the set of positive 

integers and, for each i € I , let the lattice L± be the four-element 

lattice in the diagram. 
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1 Let L be the free product in & 
b 

|b. 
i 

Let S = (s ] . Then S is infinite 

0 < s for each n , and if m ^ n , say 

of the L 

for each n > 1 let s = a, A a . A...Aa , A b 
n 1 I n — 1 n 

n 

i € I . Let s, = b, and 
1 

y 

0 n 

L 
i 

m < n , then s A s = 0 , since s ^ b 
m n m m 

and s £ a 
n m 

Thus L does not satisfy the finite disjointness condition. Of course, L 

is just the underlying lattice of the free Boolean algebra generated by a 

countable set, and this example shows that it need not satisfy the finite 

disjointness condition. 

5- Epilogue, For any infinite cardinal m one can of course define the 

m-disjointness condition: a lattice L is said to satisfy the m-disjointness 

condition if, given any a € L and any S £ L such that a $ S and 

x A y = a for distinct x , y € S , it then follows that |s| < m . An 

obvious question is the following: 

In either category £ gr_ is the m-disjointness condition 

preserved under free products for m > ^ ? 

The methods presented in sections 3 and 4 cannot be applied to 

answer this question in the affirmative because, as first observed by 
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Sierpinski [5], the obvious extension of Ramsay's Theorem to infinite 

cardinals does not hold. 

There are Ramsay-type theorems for infinite cardinals; see 

ErdoSjHajnal, Rado [2] for a rather complete survey. Of particular interest 

to our problem is the following result of Kurepa [4], under the assumption 

of the generalized continuum hypothesis : 

Let oi be any ordinal. Let T be a set such that 

|r| ^ ^ + 2 ' a t l d * e t Rl> R n b e b i n a r y symmetric relations on T 

such that ujr U R. U • • • U R = T x r . Then there is a subset r ' c T 
i l n 

and an i £ n such that |r'| ̂  + a n d a n y d i s t i n c t P € T' 

<00 6) € R. . 
i 

Using this result in place of Ramsay's Theorem the methods of 

sections 3 and 4 carry over to prove: 

Let (L. I i € I) be a family of lattices in $ or & 

satisfying the N , ..-disjointness condition , a ^ 0 . Then the free & T i — ' -

product in fi or S b satisfies the N + 2 -disjointness condition. 

Unfortunately I have been unable to construct an example to show 

that ^ + 2
 c a n n o t b e replaced by N + 1 . This is thus to date an open 

problem. 
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