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IDEAL COMPLETIONS 
Roberto Mena 

The purpose of this note is to illustrate how some 
lattice theoretical ideas, which have not been exploited 
in the context of abstract (ring) ideal theory, can be 
put to work. Namely, we will exploit the fact that 
lattices of (ring) ideals are algebraic lattices» 

0. Ideal completions of join-semilattices 

Let P and Q be posets, P£Q* Q is an extension of 
P if the ordering of P is the restriction to P of the 
ordering of Q (i.e., for x,yfcP, x é y in P if and only 
if X 4 Y in Q). P is join-dense in Q if every q€. Q is 
representable as the join (in Q) of some subset MS P, 
q=supgM; one can then take as M the set of all elements 
p e p such that p£q, M=Pf\(ql<, An element x C p is called 
compact if the following condition holds true for each 
subset MSrP: 

(0.1) if x^suppM, then x^suppM1 for some finite 
M'C M. 

A complete lattice L is said to be algebraic if the 
set of compact elements, C(L), of L is join-dense. Note 
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that in any complete lattice L, C(L) is a join-subsemi-
lattice containing the least element of L. 

Theorem Q.l, Let P be a join-semilattice with least 
element o. Then there exists a complete extension I(P) 
of P satisfying the following conditions : 

(i) P is join-dense in I(P); 
(ii) the compact elements of I(P) are exactly the 

elements of P, P=C(I(P)). 
Such I(P) is uniquely determined up to a unique P~ 

isomorphism and is called "the" ideal completion of P. 
Note that I(P) is an algebraic lattice. As a consequence 
of condition (i) P is completely meet-faithful in I(P), 
i.e., if p-infpM where pfcP and MSP, then p^inf^^M. 
So, in particular, if P has e as largest element, then e 
is also the largest element of X(P). Also, as a conse-
quence of condition (ii) P, being finitely join-closed 
in I(P), is finitely join-faithful, i.e., if p=suppM where 
p€ p and M is a finite subset of P, then p=supj^pjM. 
Caution: this does not necessarily hold for infinite M. 
But it does allow us to write x^y and x *y for x,ytP 
without any risk of ambiguity. 

The usual proof of this theorem is by construction. 
l£p is called an ideal if I is a lower end (i.e., if 
y e I and x £ y then x € I) and I is closed under finite 

96 



joins. In particular, oCl. Let I(P)={l|l is an ideal 
of p}. For p€P, let C ?» q£P*J- T^en (plci(P) 
and the mapping pi—*(p"] is an embedding of P into I(p). 
One shows I(P) satisfies conditions (i) and (ii) of the 
theorem. For a more detailed exposition, cf. [?)• 

As an immediate consequence of Theorem 0.1 we ob-
tain the following corollary: 

Corollary 1. Each algebraic lattice L is the ideal 
completion of the semilattice C(L), L=I(C(L)). 

Henceforth we will use the term semilattice to mean 
join-semilattice with least element o. 

The aforementioned uniqueness of the ideal completion 
is a special case of the following universal property: 

Theorem 0.2. Let L be a complete lattice, P a sub-
semilattice of L containing the least element. Then the 
following statements are equivalent: 

(i) L=I(P); 
(ii) for each complete lattice F, each finitely join-

preserving mapping V$:P—*F, there is exactly one com-
pletely join-preserving mapping Y:L— > F extending 

Note that finitely join-preserving means that 
V$(xv y)-VJJ(x) v V$(y) and V$(o)=o. The statement of this 
theorem verbatim can be found in Schmidt . 

The proof of (i )==*>( 11 ) is again by construction; 
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for x in I(P) one defines "Vf(x )=suppV!((P (\ (x}). Then 
one checks that yf is the unique completely join-preserv-
ing extension of U • Por the proof of (ii)rss^(i) one 
uses the standard universal algebra device for universal 
solutions. 

1. Ideal completions of si-semigroups 

A semllattice-semlgroup S or, in short, an gl-semi-
group is a (^oin-) semilattice and at the same time a 
semigroup (In multiplicative notation) subject to the 
following compatibility conditions: 

(i) for any x,y,zeS, x(yvz)=xyvxz, 
(y vz)x=yx vzy; 

(ii) for any x€S, xo=ox=o. 
(i) and (ii) may be combined in the statement that 

the product xy as a function of one of its factors is 
finitely join-preserving. As a consequence, multipli-
cation with an element, be it on the right or the left, 
is order preserving. 

L.et I(S) be the ideal completion of S. We would like 
to extend the multiplication to I(S) so that it also 
becomes an sl-semigroup. 

Note that for x,y€. S, xy=max\x1 y ' |x1 € (x\ (\S, 
y'€ (y] H s}=3upx (s){x'y'|x» € (x^Qs, y'e (ylHs^. 
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Thus, if we define 
(1.1) x^supj-^^x'y'lx1 e (xlHs, y'Mylfts} 

for x,y€ I(s) we indeed obtain an extension of the multi-
plication on S. Let x,y,z€l(s). First, we prove that 
multiplication by an element is order preserving. Assume 
x£y, let x f £ (xlHs, z f £ (zl«\3. Then x'£ (ylf\S, so, 
x'z'éyz, thus, xz£yz. Similarly, zxizy. Next we show 
that for any M£S, 

(1.2) if y=s^Pj(S)M, then xy=supI^g^xM, yx=sup].^gjMx. 
Clearly, sup^ jgjxM. Conversely, let x'£ (xlf\S, 
y! € (y]O S. Then y\£ suPx(s)M> bu-t ^y compactness there 
exists M 1C M, finite, such that y'<sup . .K^sup M1, so ** X v s ; s 

x'supJI^supx'M'é supT/c,vXM. The proof of the « S 11 o ; 
other half is alike. Now we are ready to prove associa-
tivity. By (1.1) yz=supI(s)£y,z,|y'€ (ylHs, z.1 £ <zl C\s}, 
so, by (1.2), x(yz )=sup^ ̂  j^x(y fz 1 )\y1 ,z 1 as above^. But 
for x ' M x j O s , x!(y,z') = (x,y,)zf £(xy)z. So, x(y»z')£ 
(xy)z, thus x(yz )< (xy)z. Similarly, (xy)z£x(yz). Fi-
nally, since (1.2) implies that xo=ox=o, it is enough to 
show that x(yvz)=xyvxz and (yv z)x=yxvzx. Clearly, 
x(y v z )£.xy v xz. On the other hand, yv z=sup . ,îy'y 2' I I ( S )w 1 

y1 »z ' as above}. Thus, by (1.2), x(yv zlrsup^g^xfy'v z' 
But for x'£(x\CiS, x1 (y1V z1)=x!y'v x ' z X y v xz. There-
fore, we have that I(S) with the multiplication defined 
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by (1.1) is an sl-seraigroup. Yet we are ready to prove a 
stronger result than (i). By a strong sl-semigroup we 
mean a complete sl-semigroup (completeness refers here to 
the semilattice structure), where multiplication by an 
element is completely join-preserving. We are now going 
to show that X(3) is a strong sl-semigroup: 

(1.3) (Vy* )x=Vy<x, and x(\J y+) = \J xyK, * « «. * 
for x9y^ 6 I ( S). Let y f é V yA and y' fc S. Then, by com-
pactness, there exist yA%,...,yAm such that y'i 
so, xyx(y« %v.. .vy<tJ=xyi%w.. V xyc . 

Suppose we have defined a multiplication, say on 
I(S) such that it extends the multiplication on S and 
makes I(S) into a strong sl-semigroup; since x=supT. s (xU\S u s ; 
and y=:supI(sj(y3t\ S, x*y=supI^s^x,^y\xl6 (x"](\s}=: 
suPl(S)%ryt\x* * (X1 ns, y'fc (ylf\S^=xy. Thus, the 
following theorem is now clear: 

Theorem 1.1. Let S be an sl-semigroup. Then there 
is exactly one way of extending the multiplication to I(S) 
so that 1(8) becomes a strong sl-semigroup. 

The reader may note that the proof of Theorem 1.1 is 
similar to proving Theorem 0.2 for mappings of two var-
iables. Actually, an alternate proof may be based on 
Theorem 0.2. However, this would be no shorter than the 
given one. 
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Note that I(S) is a commutative semigroup if and 
only if S is. Also, if S is a monoid, then its identity 
1 is also the identity of I(S). Note that 1 need not be 
the largest element. 

Putting Theorem 1.1 together with Corollary 1 of 
Theorem 0.1 we get: 

Corollary 1. Let L be a strong sl-semigroup which 
is an algebraic lattice. Assume that C(L) is a subsemi-
group. Then L=I(C(L)). 

The equality above is meant not only as lattices, 
but as sl-semigroups. 

We also obtain the following result corresponding 
to Theorem 0.2: 

Theorem 1.2. Let L be a strong sl-semigroup, S an 
sl-subsemigroup of L«, Then the following statements are 
equivalent: 

(i) Icl(s); 
(ii) for each strong sl-semigroup P, and each sl-

homomorphism l $ : 3 — t h e r e is exactly one strong sl-
homomorphism — e x t e n d i n g MJ . 

By an sl-homomorphlsm we mean, of course, a semi-
group homomorphism that is finitely join-preserving. If 
it is completely join-preserving we call it strong. Por 
the proof of (i )s=>(ii ) 'it is enough to show that the X 
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given by Theorem 0.2 is a semigroup homomorphism. Let 
x,y£I(S). Then Y(xy) =Y(sup I ( s ) ( ( (x} C\S) ( (y\ft S) ) = 
suppY( ( (xl O S) ( (yl(\ S) )=supF( (xl OS) (ylTVS) ) = 
(supFY((x3C\S))(supp'Y((ylC\S))=#>r(x)'V(y). The proof 
of (ii)s^^(i) is, again, by the device for universal 
solutions. 

Let us close with some examples. 
First, let us consider an arbitrary complete lattice 

L, and a pre-fixed non-compact element c L. We make L 
a strong sl-semigroup by the following multiplication: 
xy=c when neither x nor y is o and xy=o otherwise. This 
shows that in a given strong sl-semigroup, the compact 
elements need not always be a subsemigroup, even if it 
is algebraic. 

Next, let us consider a complete lattice L. Let L* 
be the set of completely join-preserving mappings of L 
into itself. L*, then, is, as a subset of the complete 

T lattice L , at least a poset. Being closed under arbi-
L 

trary joins in L , L* is actually a complete lattice 
Itself. Composition malces it a strong sl-monoid. The 
Cayley representation can be used to show that any strong 
sl-monold L is embeddable in L*. 

Let us now consider a commutative ring R with 
identity 1. Let K be a unitary (associative) algebra 
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over R. L(K) will denote the lattice of R-submodules of 
K. L(K) is an algebraic lattice where C(L(K)) (which we 
will write C(K) for short) is the set of finitely gen-
erated submodules. For M,N fe L(X) let MN be the submodule 
generated by the set of all inn where m * M and n * N. This 
multiplication makes L(K) into a strong sl-monoid (with 
identity R1K)> where, moreover, C(K) is an sl-submonoid. 
Thus, by Corollary 1 of Theorem 1.1, L(K)=I(C(K))• This 
was actually the kind of example that led to the present 
formal considerations. 

Finally, let D be an integral domain, and K its field 
of quotients. So K is an algebra over D. D is a Prtifer 
domain (cf. [l] ) if and only if 0*(K) (=C(K)\io}) is a 
group. But then C*(K) is a lattice-ordered group (1-
group). Thus, 

Theorem 1.3. Let D be an integral domain with field 
of quotients K. Then D is Prtifer if and only if L(K)=I(G) 
for some Abelian 1-group G with o. 

By an 1-group with o we mean, of course, an 1-group 
with an element o added to it acting both as a zero for 
the semigroup and the semilattice structures. 

By a theorem of Jaffard (cf. £tj ), for every Abelian 
1-group G with o, there exists a Bezout domain D with 
field of quotients K such that L(K)=:I(G) (or, equiva-
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lently C(K)=G, or L(D)=I(G-), where G- denotes the nega-
tive cone of G), Thus, from the sl-monoid point of view, 
there is absolutely no difference between Prtlfer and 
Bezout domains. Similarly, there is no difference be-
tween Dedekind domains and principal ideal domains. In 
particular, one cannot detect principal submodules in 
L(K) (cf. gj). 
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