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REPRESENTATIONS OF LATTICES AS
CONGRUENCE LATTICES

WiTliam A. Lampe

§1. INTRODUCTION

In [1] Birkhoff posed the problem of characterizing
the Tattice of all congruence relations of an algebra. It
is easy to see that this lattice is a complete lattice. In
[9] G. Grdtzer énd E. T. Schmidt showed that every algebraic
lattice is isomorphic to the Tattice of all congruence
relations of some finitary algebra. The converse had been
known for some time. Recently, a number of other representa-
tion theorems involving the lattice of congruence relations
of an algebra have been proved. One such theorem is that
every complete lattice is isomorphic to the Tattice of all
congruence relations of some algebra. In this paper we will
survey these results and discuss the basic method used in
their proofs. We will also mention some of the open problems.

(No originality is claimed for the problems).

§2. TERMS AND NOTATIONS
Let o be an ordinal and A be a set. If

£ : A% > A, then we say that f is an a-ary operation on

A. u=<CA; F) is an algebra iff F is a family of



operations on the set A. We say ¥ is of characteristic m
iff m 1is the least regular cardinal such that for any
operation f of ¥ if f 1is a-ary then o < m. ¥ s

finitary iff ¥ 1is of characteristic RO' 9 is infinitary
th

if 4 is not finitary. If x € A%, then the i component

of x 1is denoted x;. If 0 1is an equivalence relation on
(o)

for every i < a. O is a congruence relation of u {iff 0@

A and if x, y e A%, we write x =y (o) iff x; =y,

is an equivalence relation on A and for any o and any

a-ary operation f and any x, Y € A% f(x) = f(y) (9) when-

ever x = y (0). Con(u) 1is the set of all congruence relations

of % Lon(¥U) = {(Con(¥U); c)> 1is the congruence lattice of .
g is simple if Con(¥U) is the two element chain. Let

2= (A; F) be an algebra, and let B c A. B s a subalgebra

of U 1iff for every o and for every a-ary operation f of
2 and for every x e B® it holds that f(x) e B. Sub(%)

is the set of all subalgebras of 9 By convention @ e Sub(¥)
iff % has no O-ary operations. Sub(u) = (Sub(%); <) is

the subalgebra lattice of ¥. Let Z e A and o : A > A

then xo is the sequence y € A% with Yy = X40 for every

i <oa. o 1is an endomorphism iff f(xo) = f(x)o for every

operation f and every g. End(¥) 1is the set of all
endomorphisms of %, and gﬁg(m) = (End(%); o> 1is the

endomorphism semigroug of ¥%. A 1-1 onto endomorphism is

an automorphism, and Aut(2) = (Aut(9); o) denotes the

automorphism group.




3% = (L; <> 1is a complete lattice iff 6( is a
partially ordered set such that any H c L has a join
(sup, \/H) and a meet (inf, AH). Let m be a regu]af
cardinal. The element ¢ of the complete lattice ét is
m-compact iff whenever ¢ < \/H then ¢ < \/H0 for some
Hy with Hy c H and |H0| < m. The complete lattice

is m-algebraic iff every element is the join of some set of

m-compact elements. Ro-algebraic lattices are simply called

algebraic lattices. Clearly, any complete lattice E#\ is

|[L|*-algebraic.

;( is a partition lattice iff ¢;< is a sublattice

of the lattice of all equivalence relations on some set such

that equality and the total relation are members of Jﬂ.

§3. HISTORY AND RESULTS
In [3] G. Birkhoff and 0. Frink showed that the
congruence Tlattice of a finitary algebra is an algebraic

lattice. The converse appeared in 1963.

Theorem 1. (G. Gréatzer and E. T. Schmidt [9]): If 5( is any
algebraic lattice, then there is a finitary algebra % such

that Con(%) s isomorphic to JQ-

In [9] Grdatzer and Schmidt gave the construction for
an algebra ¥, all of whose operations were unary, such that
Lon(y) dis isomorphic to the specified latticelﬁ. A simpler
proof appears in [16]. Other proofs appear in [4], [13], [14]



and [21]. The proofs in [14] and [21] are essentially the
same. The various proofs differ in detail but all use
basically the same construction. The proof in [13] is due
to R. N. McKenzie.

Let C be the set of compact elements of'Ji. The
algebra in each of the proofs has |C| - Ry elements and
|C| - Ry unary operations. A long standing problem is to
show that the representation in Theorem 1 can be effected
with an algebra having one binary operation (or at least
finitely many finitary operations). The known results on
this problem are fragmentary.

G. Birkhoff showed in [2] that any group could be
isomorphic to the automorphism group of some finitary
algebra (in fact a unary algebra). His proof has been
extended to show that any semigroup with unit can be the
endomorphism semigroup of some finitary algebra. (That such
a representation could be effected using only one binary
operation or two unary operations was sden in a series of
papers which ended with [10]).

The "kernel" of any homomorphism is a congruence
relation. This provides a mechanism thru which the
endomorphism semigroup of an algebra can affect the
congruence lattice. (Very 1ittle is known about the
connection between [End(u) and Con(u). See, for example
[5] and [15]). There is no such obvious mechanism through

which the automorphism group can affect the congruence lattice.



So it was conjectured some time ago that in general the
congruence lattice and the automorphism group are "independent".
More precisely, it was conjectured that if Eﬂ\ is any algebraic
lattice and @ 1is any group then there is a finitary algebra

% such that Con(¥) s isomorphic to K and Aut(u) s
isomorphic to @. That this conjecture is true follows from
Theorem 2. In [20] E. T. Schmidt published an incorrect proof
that this conjecture is true. However, the intuitive picture

of the construction in Theorem 2 is in some ways similar to

E. T. Schmidt's.

G. Birkhoff and 0. Frink proved in [3] that any
algebraic lattice was isomorphic to Sub(u) for some finitary
U. E. T. Schmidt gave a very nice proof in [19] that Sub(%)
and Aut(¥) are independent. This result is also a Corollary
to Theorem 2. There is obviously a third corollary to
Theorem 2 which gives a representation for any pair of algebraic

Tattices.

Theorem 2. (W. A. Lampe [18]): If ® 1is any group and 3;0
and ék1 are any two algebraic lattices each having two or
more elements, then there is a finitary algebra 9 such that:
(i) Con(U) 1is isomorphic to 5KO;
(ii) Sub(%) is isomorphic to éﬂ\;
(i91) Aut(¥) 1is isomorphic to @.

The U in the proof of Theorem 2 actué]]y has n-ary

operations for every n > 0. Binary operations would have



done as well, but the proof would have been a little bit
longer. If Ci represents the set of compact elements of
aﬁi’ then ¥ has [|C,]| - |Cy] - X3] elements and operations.
In what ways can one "improve" this representation?
If 9 is a finitary algebra having at most countéb]y many
operations, then each finitely generated subalgebra is
countable, and so each finitely generated subalgebra has at
most countably many finitely generated subalgebras. Thus,
in Sub(%) each compact element has at most countably many
compact elements below it. (The converse was first proved by
W. Hanf. It appeared in [13] and [22]). It is clear then
that in general one cannot put a bound on the number of
operations that the %« in Theorem 2 has. But if one omits
conclusion (ii), then it seems likely that one could produce
a representation using only finitely many finitary operations.
One must use at least one binary operation in the
A of Theorem 2 for two reasons. First, among other things,
G. Gréatzer showed in [5] that the automorphism group of a
simple algebra having only unary or nullary operations was a
group of order p where p =1 or p is a prime. (A
corollary of the main result of [5] is that any group is the
automorphism group of some simple algebra having one binary
and many unary operations. The unary operations have been
eliminated by J. Jezek in a recent paper appearing in
Comm. Math. Univ. Carolinae). Secondly, if ¥ is unary

then the join in Sub(¥) is just set union, and so Sub(u)



is then a "completely" distributive Tattice.

Let © and ¢ be equivalence relations on some set,
and let © « & vrepresent the "composition" of © and o.
Let \PO=O,‘P]=O°<I>,‘P2=@-@-@,‘P3=@°<I>-@°<b,

etc. In the lattice of all equivalence relations on the set,

0 v ¢ = U(v,

; | i =0, 1, ...). We say the join in a partition

lattice is of type-n 1F for any 0, o, 0 v o = Wn. B. J6nsson
showed in [12] that a lattice ét is modular iff JQ is

isomorphic to a partition lattice in which the join is of type-
2. Con(¥) 1is a partition lattice but it is a special kind of

partition lattice. So a natural and non-trivial question arises

which is answered by Theorem 3.

Theorem 3. (G. Grdtzer and W. A. Lampe [7]): If 5ﬁ is a
modular algebraic lattice, then there is a finitary algebra
¥ such that Con(¥) s isomorphic to Jﬁ and the join in
Con(%) is of type-2.

Ay

Incorrect proofs for the above theorem appeared in
[9] and [21].
The algebra 9 1in the proof is unary and has |C| - Ry
elements and operations where C is the set of compact
elements of&ﬁ. One can ask the familiar questions. about the
number and kind of operations required for this representation.
The new techniques of [16] were essential to the
proof of Theorem 3. Incidentally, the join in Qgg(m) is

"automatically" of type-3 for the particular algebra A in



the proof of Theorem 1 given in [16]. The same is probably
true for the other proofs.

By generalizing the technique in the proof of
Theorem 3 we can make the algebra % in Theorem 2 be such
that the join in Con(¥%) dis of type-n and not type n-1 for
any n > 3. MWe can also make the join in (Con(¥) be of
“type w" - i.e. not of type n for any n. If @ 1is the
one-element group and Eﬁo is modular, we can construct an
% for Theorem 2 such that the join in (Con(¥%) is of type-2.
Another problem is: what are the automorphism groups of
algebras having modular congruence lattices in which the join
is of type-27?

As mentioned in the introduction, we also know that

Theorem 4: If Eﬂ‘ is a complete lattice, then there is an

algebra 9 such that Gon(u) is isomorphic to L.
More generally, we know

Theorem 5. (G. Grdtzer and W. A. Lampe [8]): If éﬂ is an
m-algebraic lattice, then there is an algebra U of charac-

teristic m such that Con(¥) s isomorphic to 5(.

In general, the congruence lattice of an infinitary
algebra is not a partition lattice. However, we can build
the YU for the proof of Theorem 5 in such a way that

Con(u) 1is a partition lattice in which the join is of type-3.

(oY oV o)



Such a result is not automatic for Theorem 5 as it was for
Theorem 1. In fact, one uses a generalization of the
technique for Theorem 3.

Once again the algebra has very many operations, and
it's not clear one needs so many.

Consider Theorems 2 and 3 and all their previously
mentioned extensions. A natural question is, "Are all the
straightforward generalizations of all these theorems to
m-algebraic lattices and algebras of characteristic m true?"
The answer is yes. But the proofs are not exactly straight-
forward generalizations of the corresponding finitary case
proofs. There is also a corresponding array of open problems.

A "master" construction from which all these theorems

follow will appear in [8].

§4. THE BASIC METHOD

A1l the above mentioned theorems are proved using
constructions that have their roots in the original
construction by Grdtzer and Schmidt for Theorem 1. 1In this
section we will make some remarks about this method.

To some extent, the method is derived from the proof
of the Birkhoff-Frink Theorem on Sub(%). So we will start
the discussion there. But first we need to define some more
terms.

Let C be some family of subsets of the set A.

¢ s a closure system iff given any family (D, | i € I)

i




with D, e C for every i e I it also holds that

ﬂ(Di

(or simply, closure) of B by [B]C =nN(D | DeC, B cD).

| i e I)eC. For B < A we define the C-closure

(@}
w

Since A eC, B ¢ [B]C € is closed iff B = [B]C e C.

The closure system C is an algebraic closure system iff C

is also closed under directed unions; i.e., if the family

(D,

; | i e I} 1is a directed partially ordered set (under set

inclusion) and each D, e C, then U(D, | 1 e I) e C. In an

i i
algebraic closure system a set is closed iff it contains the
closure of each of its finite subsets. For a regular
cardinal m one can define an m-algebraic closure system to
be a closure system in which a set is closed iff it contains
the closure of each of its subsets having less than m
elements.

If C 1is an algebraic closure system, then (C; c)
is an algebraic lattice. Conversely, any algebraic lattice
is isomorphic to some (C; <) where C 1is an algebraic
closure system. Similar statements hold for m-algebraic
lattices and m-algebraic closure systems.

Let C be an algebraic closure system on the set A.
It is easy to describe a family F of finitary operations on
A such that ¢ = Sub((A; FY). 1In particular, for each finite
sequence ag, ..., of elements of A such that

n

a, € [ag, ..., a,_ 11, define an n-ary operation f

n aO,...,a

10



by f (an, «.., a ) = a and
0° "0 3 0 n-1 n

faO’ L an(XO’ +ve» Xp_q) = x5 otherwise. One takes F
to be the family of all such operations.

Suppose now you have some algebraic lattice 5& that
you want to represent as Sub(¥ x U). A first step is to
find some algebraic closure system C on a set of the form

B x B where Jﬁ is isomorphic to <(C; c¢). Obviously, one then

should try the approach from the preceding paragraph. So for

each (ag, b >, ..., (&, b)) with a , b ) e
[{ags byds -0 <aj_], b 171, one defines an operation f
on B with f(ao, cees an—1) = a, and f(bo, e bn-l) = bn
and  f(xg, ..., X,_q) = x5 otherwise. Unfortunately, this
doesn't work. Such an f has some unwanted side effects.
In particular f(Cay, c5)s ..vs @ _ 75 ¢, 17) = (&, cq) and
it may happen of course that <an, co> ¢

\
[€ags cq?s --vs L@, y5 ¢ 171, So one drops the statement
"fxgs --vs X 7) = x5 otherwise" and leaves f wundefined

otherwise., One can take B together with these partly
defined operations and form a "partial algebra" ®B. One can
extend B to the "algebra freely generated by 8"

(E(8)) by filling in the "tables" for the operations as
freely as possible. The subalgebras generated by subsets of
B xB in [E(8) x F£(®B) are "right". But there are many new
subsets that don't generate the "right" subalgebras. So add
some new partial operations to take care of this. Freely

generate. Repeat ad infinitum. Take the direct limit, and

11



call it % Sub(¥U x ¥U) s isomorphic to aﬁ. (Actually one
must choose the initial C so that the "diagonal" is the
smallest member.) (That this works is shown in [6],
essentially. See [17] also.)

Now suppose you want an ¥ so that Con(%) is
isomorphic to the algebraic 1attice¢£. It is easy to check
that Con(%) s always an algebraic closure system on A x A.
So one might look for a set B and some algebraic closure
system C on B x B such that each member of C s an
equivalence relation on B and such that (C; <) s
isomorphic to Jﬁ. One could then hope to proceed as in the
preceding paragraph. Unfortunately, transitivity rears its
ugly head, and that idea doesn't work either. The following
modification does work. Given <a0, b0>, cees (an, bn> with
(an, bn> € [<a0, bo), ey (an_], bn-1>]C one defines three
partial operations, say f, g, h, with
00 o ) = g(bo, ..., b )

g(ao, cees an_]) = h(aO, R an_1) and h(bo, c s bn-]) = bn'

) =a , f(b

f(ao, ..., A b

n-1 n-1 n-1

Now when © is a congruence relation with ai = b. (0) for

0 < i < n-1 then under © we have a = f(ao, ve., @

= n-1
= f(bo, cs bn-1) = g(bo, cees bn—1) = g(ao, RN an_])
= h(aO, ce s an_]) = h(bo, c e bn—1) = bn' Transitivity
gives us the desired result, a, = bn (6). Now if one

replaces each partial operation of the proceeding paragraph
by three partial operations (as in this paragraph), and if one
otherwise proceeds as in the preceeding paragraph, one then

obtains an algebra % with Con(%) isomorphic to J(.
12



Now let us go back to the ® and the Ff(®8) above.
Each congruence relation © of ® has an extension [(0)
to a congruence of F(®8). It is fairly obvious that if the
ideas are going to work then one must have F(© n ¢)
= F(0) n FE(¢). Unfortunately, this fails in general. This
is the technical problem that is cured by using a triple of
operations in place of each "natural" operation. This
problem is caused by transitivity.

So it becomes important to discover lemmas giving
sufficient conditions on a partial algebra ® so that
E(n(o, ieI)) = na(E(e

; | ) | i e I). Such a lemma was
implicit in [9]. It was made explicit in both [14] and [21].

;
But this Temma was true only if B was a unary partial
algebra. A lemma of this sort for arbitrary finitary partial
algebras appears in [17]. This made Theorems 2 and 3 possible.
(There are some other innovations required also.)

One would hope that the construction outlined above
(when appropriately generalized) would work for proving
Theorem 5. It does, but a new proof is required. One of the
main new ingredients is a new, mildly complicated lemma

giving sufficient conditions on an infinitary partial algebra

8 so that f(n o, | ielI) = n(gle; | i e F) always holds,
The proofs of all the theorems use variations on the
above construction.
The reader has probably noticed that the construction

outlined above for Theorem 1 gives an algebra % having n-ary

13



operations for every n > 0. Yet it was stated in §3 that
the a1gebra % used in the proof had only unary operations.
One can do this by starting with a C such that an
equivalence relation © 1is closed iff it contains the
closure of its one element subsets. If J? is algebraic,
such a C exists. As previously noted, Gratzer and Schmidt
were forced to do this because their techniques were valid

only for unary partial algebras.

University of Hawaii
Honolulu, Hawaii 96822

14
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Proc. Univ. of Houston
Lattice Theory Conf..Houston 1973

REPRESENTATIONS OF FINITE LATTICES AS PARTITION

LATTICES ON FINITE SETS

A. Ehrenfeucht, V. Faber, S. Fajtlowicz, J. Mycielski

§ 0. A lattice is a set with two associative commutative and idem-

potent binary operations V (meet) and A (join) satisfying
XA(XVY =xV (XAYy) =x .

We put x gy if xVy =y and x <y if X <y and x £y . We
consider here only lattices L with a least element 0L and a greatest
element lL . A‘sublattice of a lattice L 1is a subset X of L

such that a ¢ X and b ¢ X imply that a A b ¢ X and avb¢X.

If OL and lL € X, X 1is called a normal sublattice.

For any set S we denote by II(S) the lattice of partitions on
S, that is, the lattice of all equivalence relations on S8 with <
defined as set inclusion, relations being treated as sets of ordered

pairs. Thus =8 X8, ={(x,x): x € S} and aAb=anb

nes) Onesy

for all a,b ¢ II(S).

A representation of a lattice L as a lattice of partitions is an

isomorphism ®: L - [I[(S) . Then we call ¢ a representation of L on
S . The representation ¢ is called normal if ¢(L) is a normal
sublattice of II(S) . For each lattice L, let u(L) be the least
cardinal y such that L has a representation on S, where |S‘ = M.

Whitman has shown [10] that p(L) < ako + ]Ll . A well-known and still
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unsolved problem of Birkhoff [2, p. 97] is whether u(L) is finite

whenever L is finite.

&1 . For any x ¢ II(S8) and a,b ¢ S we write a(x)b for

(a,b) € x . Let A and B be sets such that A NB = {v} . Let L
and M be normal sublattices of [I(A) and II(B) , respectively.

For x ¢L and y €M, let xcoy denote the partition of A (B
defined by a(xcy)b if and only if a(x)b or a(y)b or both

a(x)v and b(y)v

Theorem 1. The set N of all partitions of the form xoy with
x ¢ L and y € M is a normal sublattice of I(A U B) and this

lattice is isomorphic to L X M .

Proof. Clearly the map %: LxM » N given by ®(x,y) = xoy is a

bijection. We need only establish for all x,u ¢ L and y,v ¢ M the

equations
@ Inay ° iy T nays) |
G Oy ° ey = Cneays)

(iii) (xoy) v (uov) (xvu o(yvwv,,

(iv) (xoy) A (uo V) (x AU o (y AvV) .

1

These equations can be proved by examining all possible special cases.

In place of (iii) and (iv) it is sufficient to prove the cases

(v) X0y = (xo0M) v (OLoy) = (xolm) A (1Loy) ,
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fl

(vi) (xo OM) v (QOOM) (xvuw oo, ,

]
o
c

(oLoy)v(oLov) L (y v v) ,

(xolM) A (UOlM)

i
~
b

Au) ol

i
ot
o]

(lLoy)/\(lLov) L (y A V)

which are obvious. We prove (iii) from (v) and (vi) as follows:

(xoy) vV (uov) = (x‘nOM) V (0, 0oy) vV (U°0M) vV (0 °v)

It

(XOOM) \Y; (uoom) Y] (OLoy) \YJ (OLov)

it

((x v u o OM) Vv (OL o (y v v))

H

(xvu) o (yvv).

The remaining facts are established in a similar way.

‘Corollary 2. If L 1is a sublattice of the product of the lattices

Li (i =1,...,k), then

k
(L) < Zu(Li)-k+l )

i=1
Proof. The proof follows directly from Theorem 1 by induction.
Theorem 3. If L is a subdirect product of M and P, if x(M) and
w(P) are finite and if (OM,IP) eL, e.g., L=MxP, then
p(L) = pM) +p(P) -1 .
Proof. For each x ¢ M there exists a Yy € P such that (x,yx) L .

Similarly, for each y € P there exists an xy € M such that

(xy,y) €L . Thus for each x ¢M and y € P we have
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(oMsY) = (OM’lp) A (xy’y) € L and (x’lp) = (OM’lp) \% (x:yx) €L

By Corollary 2, we know that p(L) < u(M) +u(P) -1 . Suppose that ¢
is a representation of L on a set T with uWu(L) elements. Suppose

that QP(OM,l) has k equivalence classes Al’A eea,A of car-

P 2’ k
dinalities nysfy,eee n . Let PA be the lattice of partitions
i
of A formed by restricting the elements (P(OM,y) with y ¢ P to

A . that is, PAi = {@(OM,y)|A1: y € P} . Let ¢(y) = (@(OM.y)\Al,

cp(OM,y)lA ,...,‘-P(OM,y)A) . Then ® is an isomorphism of P into
2 k

P X...xP and thus Corollary 2 yields
Al Ak

k
W(P) S )n -K+l =u(L)-k+1 .
i=1

On the other hand, M is isomorphic to {(x,l)‘ Xx €M} ¢ L . Thus M

can be represented on T/ (90 )) (T factored by the equivalence

M’1P
relation Cp(OM,lP) ), so k 2 u(M) . Hence

p(l) 2 p(P) +k=-1 2 p(P) +p(M) -1 .

Corollary 4. If (L) is finite and L is a sublattice of II(S),
where |S| = u(L), then L is a normal sublattice. Thus a minimum

finite representation is a normal representation.

Proof. Since L can be represented on S/OL’ the fact that p(L) is

minimum implies that O If 1 has equivalence classes

L = %) - L

Al’Az""’Ak , then L is isomorphic to a sublattice of the product

k
of the LA . Corollary 2 gives u(L) < Z lAil -k+1 = pL)~-k+1,
i
i=1

a contradiction unless k =1 . Thus 1L = lII(S) .
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Remark 1. By Theorem 3, the problem of finding u(L) for all finite
lattices L reduces to the determination of u(L) for all finite
directly indeccomposable L 's . This reduces this problem for various
special classes of lattices: Dilworth [3] has shown that every finite
relatively complemented lattice is a product of simple lattices. This
applies also to finite geometric lattices since they can be character-
ized as finite relatively complemented semi-modular lattices [2; p. 89].
Birkhoff has shown that every modular geometric lattice is a product of
a Boolean algebra and projective geometries [2; § 7]. Dilworth (see

[2; p. 97]) has shown that every finite lattice is isomorphic to some
sublattice of a finite semi-modular lattice. Hartmanis [5] has shown
both that every finite lattice is isomorphic to some sublattice of the
lattice of subspaces of a geometry on a finite set and that every finite
lattice is isomorphic to the lattice of geometries of a finite set.
Jdnsson [7] has shown that every finite lattice is isomorphic to a

sublattice of a finite subdirectly irreducible lattice.

Remark 2. The assumption (OM,lp) € L in Theorem 3 is essential. 1In
fact, if Cn is the n- element chain and if L = C3 X C2 , then
Theorem 3 gives (L) = 4 ; however, by Figure 1, L 1is also isomorphic

to a subdirect product of [I(2) X I[I(2) and TM(2) x [(2), which would

lead to p(L) =5 if Theorem 3 applied.
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(1,y) & x (y,%

(x,y)

/
”

(0,0)

Figure 1.

Remark 3. Let L g ll(n) mean that L‘ has a normal representation
on n . Theorem 1 shows that I[I(g) x [I(4) «[I(24-1) . Since

N(4) < N(L) X (L) , this suggests the question: For what ¢ and m
is (L) < (m) ? If T[1() <1II(I,1) and [I(£) GH(LZ) , then

neg) <« MCey + 45~ 1) . Since [I(3) « [I(4), we have [(3) < [{m) for
all m >3 . Ralph McKenzie has proved (private communication) that

(L) an(g+1) does not hold for ¢ = 4

§ 2. We now examine . for some special lattices. We recall that
by a complement of x in a lattice L is meant an element y ¢ L

such that x Ay =0 and xvy =1

Lemma 5. If Pl’Pz""P and Q are partitions of a set S with n

k
k

elements and Pl V oees V Pk =Q, then lS/Pi\ < n(k-1) + ]S/QI

i=1

K
in addition, P, VP, =Q forall i#j, then Y, |s/P, |
i=1

s-g- (n+|s/Q)) .
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Proof. For every A ¢ S/Pi (i =1,2,...,k) form a path through all

points of A . Thus S obtains a graph structure and by

PV ...VP

1 = Q, this graph has § = ‘S/Q‘ connected components

K

containing, in some order, nl,nz,...,n£ points. Since a connected

graph with m points has at least m-1 edges,

k 2

YL YAlFD = ) (e
i=1A¢s/P, j=1

k

Y Y 1al-is/p|| 2n-2s;

i=1\Ags/P,

k
), <|s|-|s/B ) 2 n-{s/q|
i=1
k
kn - ) |s/P,| = n-|s/Q| ;
i=1
Kk
E ‘S/Pi\ < nk-1) + |s/Q| .
i=1

Now suppose Pi \Y; Pj =Q for all i £ 3j . Then by the last equation

with k = 2, for all i £ j, lS/Pi|+\S/Pj| < n+|S/Q| . Hence we have
k
(k-1 L \s/ey| = ), ([s/e) « |s/p ]

i=1 1475

(;) (n+|s/Q} .

The lemma follows.
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Theorem 6. Consider the lattice L(£,m) consisting of 0 and 1 and

of two chains P1 > ae. > P£ of length ¢ and the other Ql > ... > Q

of length m, such that Pi and Qj are complementary for all i

m

and Jj (see Figure 2). If g > 1, then

p(L(L,m)) = L+m~-1+{2,/L+m=-2}.

1

1 Q

2 Q,

- .

"o

p

L Q
- m

0
Figure 2.

Proof. Here, the symbol {x} denotes the least integer not less than

X . We suppose that k = ]Pl| < |Ql\ . Then 1P£‘ > lPl| +£4-1 and
Q| = || +m-1. By Lemma 5, if u(L) =n, then
n+l 2 ]PM +{Q] = |P | +2-1+]Q|+m-1 .
Letting x = g+m, we have
k < {Q| sn+3-k-x .

Since P1 A Q1 = 0, no class of Q1 can have more than Kk elements,
Thus

nsk]Q <k(n+3-k=-x) .

1|
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Since the maximum of the right hand side of this equation occurs when

1
k :§(n+3—x) ,

Solving this equation, we find that

n=x-1+2,/x-2,

We first demonstrate a representation of L(g,1). .Let k be the
first integer such that k2 > 2+2,/2~1 (k = 1+{/Z_-1}) . Let n
be the ihitial segment of length 1+—{2~/ZTT1} in the lexicographic
ordering on zk X Zk . The partition P1 on n is defined by
((x,9), (1, V) ¢ P/ if and only if x = u . The partition Q, on n
is defined by ((x,y),(u,v)) ¢ Ql if and only if y = v , (Note that
g > 2_ implies that k > 4 and thus P1 £ Q1 .} The partition P
is defined by ((s,y),(u,v)) ¢ PZ if and only if either x =0 = u
or (x,y) = (u,v) . The partitions Pi with 1 <« i < g are formed
by interpolation between P1 and Pﬂ (separating off each of the
singletons in Pz one at a time from Pl ). We must verify that a

sufficient number of partitions can be formed in this way. Since

\Pz‘ =n-k+1 and \Pll =-{£} , if all possible interpolations were

made, the length of the chain from P1 to Pz would be

n
1f {} <k-1, we have
p2g+l+{2/0-1}-2{.Jo-1} 2.
. n
It {E} = k, we have

p=2g+{2J20-1}-2{Je-1}.
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1
Suppose s<,/£-1ss+-§ for some integer s . Then n = g+2s+1,

2 . . . 2
k = s8s+2 and ¢ < s +s+-2-. Since ¢ 1is an integer, f < 8 +s+1
and thus

n < 92+35+2 = k(k=-1) .

This gives {E} = k-1, a contradiction. Thus {2/}71} = 2 {fz-_l}
and hence p = g

To complete the proof, we show that L(g-1,m+1) can be
represented on the same set as L(fg,m) . Suppose g = 2 and
P, € L(£,m) has classes Ci y 1 <1 ¢n . Since

y/

assume that

P,G-l -] Pz, we may

Pl?,-l has a class containing C1 U C2 . Since

pf,—l A Qm =0, for every x ¢ C1 and y ¢ 02 , (x,y) Qng . Consider

a shortest Pﬂ—Qm path xlxz...xn (n =2 3) from Cl to C2 . Then

x, €C, and x ¢C, but xi‘:_ClUCZ, 2 i <n . Thus

(xl,xz) € Qm . Let Qm+1 < Qm be the partition defined by: for all
X,y £ X5 (x,y) € Qm+1 if and only if (x,y) ¢ Qm; for all x,

(x,x,) € Qm+l if and only if x = x, ., To show Pz—l v Q =1,

1 m+1

we need only show (xl,xz) € Pz~l \ Qm+1 for then pf,-l \Y; Qm+ 1 2

P vQ =1 . Since the P -Qm path x

o-1 m P does not contain

2...Xn

X it isa P_-Q

1’ ) path. Since (xn,xl) €P

X, o0 X X is
n

m+l -1 72 1

a

Q

Pz_l- mel path from x to  x, .

2 1

We now consider the lattice Ln of subspaces of the geometry Gn
with n points and 1 1line,. Ln congists of n mutual.ly complementary
elements and 0 and 1 (see Figure 3). Hartmanis [6] has shown

that I_L(Ln) < 2p where p is the first prime larger than n . We
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shall prove u(Ln) s'p , where p 1is the first prime not less than

(see Theorems 7, 8 and 9 below).

pl
Figure 3.
Theorem 7. n+1l; n even
“,(Ln) 2
n ; n odd .

Prool. Supposc Ln can be represented as a sublattice L of the
lattice ol partitions of m . Each non-trivial P ¢ L defines a set
of edges L, = {{a,b}: (a,b) ¢ P, a £b} . Since PAQ =0 and

PVvQ=1 when P £Q, we have that LP UL, is a connected graph.

Q
Thus
(1) |Lpl +1Lg} = jLp ULl 2 m-1,
(ii) }: ‘Lp‘ < % m(m=-1) .
PelL
From (i) we get
n(n-1)
(n=1) Y |Lp| = ) (Lp| + | 2 2B (-1
PcL P£Q

Hence f{rom (ii),
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m(m-1) 2 S lel 2-;— n(m-1)

[ R

Pcl

which yiclds m 2 n . Equality can occur only if ]LP‘-+‘LQl =m-1
for all non-trivial P £ Q ¢ L, which implies that m-1 is even

whenever m = n = 3 . Small cases are handled by inspection.

Theorem 8. The following four statements are equivalent:

(1) p(b, ) =2n-1;

(ii) The complete graph on 2n-1 points, can be edge-

KZn--l’

colored with 2n-1 colors so that the union of any two color classes

is a spanning path;
(iii) K2n can be edge-colored with 2n-1 colors so that the union

ol any two color classes is a spanning cycle;

(iv) The symmetric group on 2n eclements, S contains a sct

2n’

{li: i =1,2,...,2n~-1} of involutions such that the group generated

by Ii and Ij is transitive whenever i # j

Proof. (i) « (ii) . If we assume (ii), each color class is a partition,
so0 (i) follows easily. Suppose (i) holds. As we have seen above

\LP U LQ| =2n-2 forall P £Q . Since Ly U LQ is connected, it

=n-1 and L contains no cycles, that

must be a tree, Thus ‘LP‘ p

is, P is a maximum matching of the points of K2n-1 . (ii) now

follows.

(ii) e (iii) . Suppose K2n has been (2n-1) edge-colored

so that the union of any two color classes is a spanning cyle. Clearly

K2n‘\{v} satisfies (ii). On the other hand, if K has been

2n-1

(2n~-1) edge-colored so that the union of two color classes is a
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spanning path, each point misses one color and, by counting, each

is 2n-1

color misses one point. K, =K, , U {{v,a}: a ¢ K2n—1}

cdge-colored by coloring {v,a}, a ¢ K with the color missing

2n-1"’
at a . It is easy to show that this coloring satisfies (iii).

(iii) « (iv) . Each 1 - factor of K2n defines an involution
on 2n and vice versa. 8Since the elements of the group generated by
the involutions I and J have the form eeoe IJIJ ..., the union
of two 1~ factors spans KZn if and only if the group generated by

the corresponding involutions is transitive.

Theorem 9. The statement 8 (i) holds if n (see [1] and [8]) or

2n-1 (see [1] and [9]) is a prime.

Remark 4. B. A. Anderson (private communication) has also shown that
8 (i) holds for n =8 and n = 14. Thus the first unknown case is
n : 18 . We would like to know a similar result to Theorem 6 about a
lattice L(zl,zz,...,zw) consisting of 0 and 1 and of w chains
Pil > e > Piﬂi , 1 €£i <« w, such that Pij and Pi’j’ are com-
plementary when i # i’ . However, the method of proof used in

w
Theorem 6 gives only p(L(zl,..,,zw) =3 f(i,w) where 4 = w“l E: Li
i=1

and

f(z,w) :22-3+8 w-—1+4 fwz—l /4+w2(2z—3) .
w

2
w

Although this reduces to Theorem 6 when w = 2, for large values of

it is a very bad estimate since 1lim f(Z,W) = 22-—3 , an absurdity.
W

Actually, proofs of this type seem to indicate that the best results

for these lattices are obtained by partitions with nearly equal classes.

For this reason, we mention the following theorem.
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Theorem 10, Lk+2 has a normal representation : Lk+2 - [I1(S),

where \SI = n2 such that \S,’¢(a)\ = n and ‘A‘ = n for each

A € 8/ %P(a) whenever a ¢ Lk+2’ a k 0L ,1L , il and only if
k+2 k+2

there are kK mutually orthogonal Latin squares of order n .

Proof. Suppose L exists. Let the partitions be c, = {Cil"'°’cin}’

1 <i<k, A={A,...,A}, and B ={B,...,B } . We form the
1 i
i 11 : = j i .
Latin square LZm as follows let Lzm j if Cij N A£ N Bm £ ¢

The definition is possible since Az NB_ = {xzm} for all £ and m,

. . - i .
and given 1, some Cij must contain xzm . Suppose Lzm =L, , =]

Then ij N Aﬂ N Bm A ¢ and Cij N AL' N Bm # ¢, contradicting
AE N Ag' - ¢ unless £ = £’ . Similarly Lzm = Lzm' if and only if
m - m’ . Thus L;m is a Latin square. Suppose Lim = Lis = p and
Lj = LJ =q with i # j . Then
4m rs
(CipnALan:{xzm}
Cip 0 Ar n Bs = {xrs}

ﬂ CJq n AE B, = {xlm}

\ch NA_NB_ ={xrs} .
Thus C; N Cy = {xzm} = {xrs} , s0 4 =r and m =s . Hence the

Lzm are mutually orthogonal Latin squares.

ik :
Conversely, suppose {Lzm}i—l is a set of mutually orthogonal
Latin squares. We consider the n2 elements in Zh X Zh . We let

A, = {i} X 2, and B, =7 X {i} . wWe put (&,m) ¢ Cij if and only if
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i . . . e s
Ly,=3 . Itis easily verified that the partitions C, = {Cil""’cin}’

1 <ic<ck, A= {Al,...,An} , and B = {Bl""’Bn} generate the desired

lattice.

Corollary 11. (See |4; p. 177]). The following statements are equivalent:

(i) The edges of the complete graph K 9 on n2 points can be decom-
n

puosed into n+1 sets so that each set consists of n components iso-
morphic to Kn and so that the union of any two sets is a connected
graph.

(ii) There exists a projective plane Pn aof order n .
(iii) There are n-~1 mutually orthogonal Latin squares of order n .
(iv) There is a partition lattice L on n2 elements consisting of

n4+ 1l mutually complcementary elements plus O and 1 such that cach

non-trivial partition has n classes of n elements.

Proof. We shall sketch the proof. The equivalence of (i) and (iv)
follows from the method used in the proof of Theorem 7. That is, to
each partition P £ 0,1 in L there corresponds a set of edges

Ly, = {{a,b}: (a,b) € P} . (Note that each of these partitions turns
out to be nothing more than a parallel class of lines in an affine
geometry.) The equivalence of (iii) and (iv) follows from the theorem.

The proof of the equivalence of (i) and (ii) follows standard lines:

Suppose (i) holds. To form Pn add to the points of K 2 the points
n

Cy» ..,cn+1, corresponding to the n+1 sets Cl""’cn+1 . We

suppose the components of Ci are Cil""’cin . The lines of Pn

are then the sets Cij U {ci} , i=1,...,n+1, and the set

{cl,...,c } . Conversely, if (ii) holds, let {cl,...,cn+1} be a

n+l
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line in Pn . The points of K 2
n

are then the points of

Pn\\{cl""’cn+l} . The edge {x,y} of an is in the set c, if

x y and ¢, are colinear in P_ .
! i n

§ 3 . By Whitman's Theorem (see § 0), every lattice is a sublattice of
the lattice of ail partitions of some set. If @ is a representation of
a lattice L as a lattice of partitions of A, and B is a subset of
A, then for every x ¢ L let WB(x) be the restriction of the partition
p(x) to B . Of course, ¢h(L) does not necessarily have to be a
sublattice of L . Even if @B(L) is a sublattice, ¢h does not have

to be an iSOmorphism. If @B(L) is a sublattice and wB is an iso-

morphism, then the subset B is called faithful.

Remark 5. Every representation of the lattice L2 has a finite flaithful

subset. The simplest example of a finite lattice which hés a representa-
tion without finite faithful subsets is L3 . The representation is
constructed as follows: the points of the set are the vertices of the
regular triangular lattice on the plane. Three points form an equivalence

class with respect to a given color if they are the vertices of a triangle

which has this color (see Figure 4). It is clear that if we take any




finite subset S of this triangulation, there will be at least onc
vertex which appears in only one colored triangle, say color 1 . Thus
this vertex is not 2 v 3 equivalent to any other, so S cannot be a
faithful subset. We can also show that the lattice of Figure 5 has a

representation without finite faithful subsets.

Figure 5.

There exists a finite distributive lattice with a representation
without finite faithful subsets. The lattice generated by the partitions

induced by the colors 1, 2 and 3 in Figure 6 is isomorphic to

{0,1}3 .

Figure 6.

The lattice L in Figure 7 is a finite lattice with an infinite
representation without proper faithful subsets. Partitions A, B,

A, and B, of 7 are formed as follows: A has classes {2n , 2n + 1}

for all n ¢ 2, B has classes {2n-1,2n} for all n, Al has

classes {2n-1,2n+4} for all n, and B, has classes {2n+2,2n-1}
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for all n . It is clear that these partitions generate a lattice
isomorphic to L . For any proper subset of Z, one of the relations
Av B=1, A1 Y B1 = 1 would fail, so this representation of L has

no proper faithful subsets.

Problems.

1. Suppose P g Q are lattices and P has a rcpresentation
without finitc faithful subsets. Does Q have such a representation?
Can a given representation ¢ of P without finite faithful subsets
be extended to a representation @ of Q such that @ also does not
have finite faithful subsets?

2. Characterize the class of 1atti§es which can be generated by
colorings of tesselations of the plane.

3. (See Remark 3.) For what £ and m is [I(£) < O(m) ?

4. (See Theorems 7, 8 and 9 and [1], [8] and [9].) Find u(L)
for all n .

5. (See Remark 4.) Find “(L(Ll’zz""’zw)) for all w- tuples

of positive integers (zl,zz,...,zw> .
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